A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true
Acta Arithmetica, Tome 178 (2017) no. 2, pp. 125-134
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $$
T(n)=\left\{\begin{array}{@{}ll@{}}3n+1(n\hbox{ odd})\\ n/2(n\hbox{ even})\end{array}\right.\quad\ (n\in\mathbb Z).
$$
We call “the orbit of the integer $n$” the set
$$
\mathcal O_n:=\{m\in\mathbb Z:\exists k\ge0,\, m=T^k(n)\}
$$
and we write $c_i(n):=\#\{m\in\mathcal O_n:m\equiv i\bmod{18}\}$. Let $W$ be the set of integers whose orbit contains $1$ and is, in the following sense, approximately well distributed modulo $18$ between the six elements of the set $I:=\{1,5,7,11,13,17\}$ (the elements of $\{1,\ldots,18\}$ that are odd and not divisible by $3$). More precisely:
$$
W:=\biggl\{n\in\mathbb Z:\exists k\ge0,\, T^k(n)=1\hbox{ and }\forall i\in I,\, \frac{c_i(n)}{\sum_{i\in I}c_i(n)}\le\frac16+0.0215\biggr\}.
$$
We prove that $W\cap\mathbb N$ has density $0$ in $\mathbb
N$. Consequently, if the $3x+1$ conjecture is true, most of the
positive integers $n$ satisfy
$$
\frac{\max_{i\in I}c_i(n)}{\sum_{i\in I}c_i(n)} \gt \frac16+0.0215.
$$
Keywords:
begin array hbox odd hbox even end array right quad mathbb call orbit integer set mathcal mathbb exists n write mathcal equiv bmod set integers whose orbit contains following sense approximately distributed modulo between six elements set elements ldots odd divisible precisely biggl mathbb exists hbox forall frac sum n frac biggr prove cap mathbb has density mathbb consequently conjecture positive integers satisfy frac max n sum n frac
Affiliations des auteurs :
Alain Thomas 1
@article{10_4064_aa8385_9_2016,
author = {Alain Thomas},
title = {A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true},
journal = {Acta Arithmetica},
pages = {125--134},
publisher = {mathdoc},
volume = {178},
number = {2},
year = {2017},
doi = {10.4064/aa8385-9-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8385-9-2016/}
}
TY - JOUR AU - Alain Thomas TI - A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true JO - Acta Arithmetica PY - 2017 SP - 125 EP - 134 VL - 178 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8385-9-2016/ DO - 10.4064/aa8385-9-2016 LA - en ID - 10_4064_aa8385_9_2016 ER -
%0 Journal Article %A Alain Thomas %T A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true %J Acta Arithmetica %D 2017 %P 125-134 %V 178 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8385-9-2016/ %R 10.4064/aa8385-9-2016 %G en %F 10_4064_aa8385_9_2016
Alain Thomas. A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true. Acta Arithmetica, Tome 178 (2017) no. 2, pp. 125-134. doi: 10.4064/aa8385-9-2016
Cité par Sources :