A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true
Acta Arithmetica, Tome 178 (2017) no. 2, pp. 125-134.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $$ T(n)=\left\{\begin{array}{@{}ll@{}}3n+1(n\hbox{ odd})\\ n/2(n\hbox{ even})\end{array}\right.\quad\ (n\in\mathbb Z). $$ We call “the orbit of the integer $n$” the set $$ \mathcal O_n:=\{m\in\mathbb Z:\exists k\ge0,\, m=T^k(n)\} $$ and we write $c_i(n):=\#\{m\in\mathcal O_n:m\equiv i\bmod{18}\}$. Let $W$ be the set of integers whose orbit contains $1$ and is, in the following sense, approximately well distributed modulo $18$ between the six elements of the set $I:=\{1,5,7,11,13,17\}$ (the elements of $\{1,\ldots,18\}$ that are odd and not divisible by $3$). More precisely: $$ W:=\biggl\{n\in\mathbb Z:\exists k\ge0,\, T^k(n)=1\hbox{ and }\forall i\in I,\, \frac{c_i(n)}{\sum_{i\in I}c_i(n)}\le\frac16+0.0215\biggr\}. $$ We prove that $W\cap\mathbb N$ has density $0$ in $\mathbb N$. Consequently, if the $3x+1$ conjecture is true, most of the positive integers $n$ satisfy $$ \frac{\max_{i\in I}c_i(n)}{\sum_{i\in I}c_i(n)} \gt \frac16+0.0215. $$
DOI : 10.4064/aa8385-9-2016
Keywords: begin array hbox odd hbox even end array right quad mathbb call orbit integer set mathcal mathbb exists n write mathcal equiv bmod set integers whose orbit contains following sense approximately distributed modulo between six elements set elements ldots odd divisible precisely biggl mathbb exists hbox forall frac sum n frac biggr prove cap mathbb has density mathbb consequently conjecture positive integers satisfy frac max n sum n frac

Alain Thomas 1

1 448 allée des Cantons 83640 Plan-d’Aups-Sainte-Baume, France
@article{10_4064_aa8385_9_2016,
     author = {Alain Thomas},
     title = {A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true},
     journal = {Acta Arithmetica},
     pages = {125--134},
     publisher = {mathdoc},
     volume = {178},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8385-9-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8385-9-2016/}
}
TY  - JOUR
AU  - Alain Thomas
TI  - A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true
JO  - Acta Arithmetica
PY  - 2017
SP  - 125
EP  - 134
VL  - 178
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8385-9-2016/
DO  - 10.4064/aa8385-9-2016
LA  - en
ID  - 10_4064_aa8385_9_2016
ER  - 
%0 Journal Article
%A Alain Thomas
%T A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true
%J Acta Arithmetica
%D 2017
%P 125-134
%V 178
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8385-9-2016/
%R 10.4064/aa8385-9-2016
%G en
%F 10_4064_aa8385_9_2016
Alain Thomas. A non-uniform distribution property of most orbits, in case the $3x+1$ conjecture is true. Acta Arithmetica, Tome 178 (2017) no. 2, pp. 125-134. doi : 10.4064/aa8385-9-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8385-9-2016/

Cité par Sources :