Divisor divisibility sequences on tori
Acta Arithmetica, Tome 177 (2017) no. 4, pp. 315-345
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define the Divisor Divisibility sequence associated to a
Laurent polynomial $f\in\mathbb{Z}[X_1^{\pm1},\ldots,X_N^{\pm1}]$ to
be the sequence $W_n(f)=\prod f(\zeta_1,\ldots,\zeta_N)$, where
$\zeta_1,\ldots,\zeta_N$ range over all $n$th roots of unity with
$f(\zeta_1,\ldots,\zeta_N)\ne0$. More generally, we define
$W_\varLambda(f)$ analogously for any finite subgroup
$\varLambda\subset(\mathbb{C}^*)^N$. We investigate divisibility,
factorization, and growth properties of $W_\varLambda(f)$ as a function
of $\varLambda$. In particular, we give the complete factorization of
$W_\varLambda(f)$ when $f$ has generic coefficients, and we prove an
analytic estimate showing that the rank-of-apparition sets for
$W_\varLambda(f)$ are not too large.
Keywords:
define divisor divisibility sequence associated laurent polynomial mathbb ldots sequence prod zeta ldots zeta where zeta ldots zeta range nth roots unity zeta ldots zeta generally define varlambda analogously finite subgroup varlambda subset mathbb * investigate divisibility factorization growth properties varlambda function varlambda particular complete factorization varlambda has generic coefficients prove analytic estimate showing rank of apparition sets varlambda too large
Affiliations des auteurs :
Joseph H. Silverman 1
@article{10_4064_aa8381_11_2016,
author = {Joseph H. Silverman},
title = {Divisor divisibility sequences on tori},
journal = {Acta Arithmetica},
pages = {315--345},
publisher = {mathdoc},
volume = {177},
number = {4},
year = {2017},
doi = {10.4064/aa8381-11-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8381-11-2016/}
}
Joseph H. Silverman. Divisor divisibility sequences on tori. Acta Arithmetica, Tome 177 (2017) no. 4, pp. 315-345. doi: 10.4064/aa8381-11-2016
Cité par Sources :