Divisor divisibility sequences on tori
Acta Arithmetica, Tome 177 (2017) no. 4, pp. 315-345.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define the Divisor Divisibility sequence associated to a Laurent polynomial $f\in\mathbb{Z}[X_1^{\pm1},\ldots,X_N^{\pm1}]$ to be the sequence $W_n(f)=\prod f(\zeta_1,\ldots,\zeta_N)$, where $\zeta_1,\ldots,\zeta_N$ range over all $n$th roots of unity with $f(\zeta_1,\ldots,\zeta_N)\ne0$. More generally, we define $W_\varLambda(f)$ analogously for any finite subgroup $\varLambda\subset(\mathbb{C}^*)^N$. We investigate divisibility, factorization, and growth properties of $W_\varLambda(f)$ as a function of $\varLambda$. In particular, we give the complete factorization of $W_\varLambda(f)$ when $f$ has generic coefficients, and we prove an analytic estimate showing that the rank-of-apparition sets for $W_\varLambda(f)$ are not too large.
DOI : 10.4064/aa8381-11-2016
Keywords: define divisor divisibility sequence associated laurent polynomial mathbb ldots sequence prod zeta ldots zeta where zeta ldots zeta range nth roots unity zeta ldots zeta generally define varlambda analogously finite subgroup varlambda subset mathbb * investigate divisibility factorization growth properties varlambda function varlambda particular complete factorization varlambda has generic coefficients prove analytic estimate showing rank of apparition sets varlambda too large

Joseph H. Silverman 1

1 Mathematics Department Box 1917 Brown University Providence, RI 02912, U.S.A.
@article{10_4064_aa8381_11_2016,
     author = {Joseph H. Silverman},
     title = {Divisor divisibility sequences on tori},
     journal = {Acta Arithmetica},
     pages = {315--345},
     publisher = {mathdoc},
     volume = {177},
     number = {4},
     year = {2017},
     doi = {10.4064/aa8381-11-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8381-11-2016/}
}
TY  - JOUR
AU  - Joseph H. Silverman
TI  - Divisor divisibility sequences on tori
JO  - Acta Arithmetica
PY  - 2017
SP  - 315
EP  - 345
VL  - 177
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8381-11-2016/
DO  - 10.4064/aa8381-11-2016
LA  - en
ID  - 10_4064_aa8381_11_2016
ER  - 
%0 Journal Article
%A Joseph H. Silverman
%T Divisor divisibility sequences on tori
%J Acta Arithmetica
%D 2017
%P 315-345
%V 177
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8381-11-2016/
%R 10.4064/aa8381-11-2016
%G en
%F 10_4064_aa8381_11_2016
Joseph H. Silverman. Divisor divisibility sequences on tori. Acta Arithmetica, Tome 177 (2017) no. 4, pp. 315-345. doi : 10.4064/aa8381-11-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8381-11-2016/

Cité par Sources :