On Hilbert’s irreducibility theorem
Acta Arithmetica, Tome 180 (2017) no. 1, pp. 1-14
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We obtain new quantitative forms of Hilbert’s irreducibility
theorem. In particular, we show that if $f(X, T_1, \ldots, T_s)$ is
an irreducible polynomial with integer coefficients,
having Galois group $G$ over the function field
$\mathbb Q(T_1, \ldots, T_s)$, and $K$ is any subgroup of $G$, then there
are at most
$O_{f, \varepsilon}(H^{s-1+|G/K|^{-1}+\varepsilon})$
specialisations $\mathbf{t} \in \mathbb Z^s$
with $|\mathbf{t}| \le H$ such that the resulting polynomial
$f(X)$ has Galois group $K$ over the rationals.
Keywords:
obtain quantitative forms hilbert irreducibility theorem particular ldots irreducible polynomial integer coefficients having galois group function field mathbb ldots subgroup there varepsilon s varepsilon specialisations mathbf mathbb mathbf resulting polynomial has galois group rationals
Affiliations des auteurs :
Abel Castillo 1 ; Rainer Dietmann 2
@article{10_4064_aa8380_2_2017,
author = {Abel Castillo and Rainer Dietmann},
title = {On {Hilbert{\textquoteright}s} irreducibility theorem},
journal = {Acta Arithmetica},
pages = {1--14},
publisher = {mathdoc},
volume = {180},
number = {1},
year = {2017},
doi = {10.4064/aa8380-2-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8380-2-2017/}
}
Abel Castillo; Rainer Dietmann. On Hilbert’s irreducibility theorem. Acta Arithmetica, Tome 180 (2017) no. 1, pp. 1-14. doi: 10.4064/aa8380-2-2017
Cité par Sources :