Superelliptic equations arising from sums of consecutive powers
Acta Arithmetica, Tome 172 (2016) no. 4, pp. 377-393
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using only elementary arguments, Cassels solved the Diophantine equation $(x-1)^3+x^3+(x+1)^3=z^2$ (with $x, z \in \mathbb Z$).
The generalization $(x-1)^k+x^k+(x+1)^k=z^n$
(with $x, z, n\in \mathbb Z$ and $n\ge 2$)
was considered by
Zhongfeng Zhang who solved it
for $k \in \{ 2, 3, 4 \}$ using Frey–Hellegouarch curves and their corresponding Galois representations.
In this paper, by employing some sophisticated refinements of this approach,
we show that the only solutions for $k=5$ have $x=z=0$,
and that there are no solutions for $k=6$. The chief innovation we employ is a computational one, which enables
us to avoid the full computation of data about cuspidal newforms of high level.
Keywords:
using only elementary arguments cassels solved diophantine equation x mathbb generalization x mathbb considered zhongfeng zhang who solved using frey hellegouarch curves their corresponding galois representations paper employing sophisticated refinements approach only solutions have there solutions chief innovation employ computational which enables avoid full computation about cuspidal newforms high level
Affiliations des auteurs :
Michael A. Bennett 1 ; Vandita Patel 2 ; Samir Siksek 2
@article{10_4064_aa8305_12_2015,
author = {Michael A. Bennett and Vandita Patel and Samir Siksek},
title = {Superelliptic equations arising from sums of consecutive powers},
journal = {Acta Arithmetica},
pages = {377--393},
year = {2016},
volume = {172},
number = {4},
doi = {10.4064/aa8305-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8305-12-2015/}
}
TY - JOUR AU - Michael A. Bennett AU - Vandita Patel AU - Samir Siksek TI - Superelliptic equations arising from sums of consecutive powers JO - Acta Arithmetica PY - 2016 SP - 377 EP - 393 VL - 172 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8305-12-2015/ DO - 10.4064/aa8305-12-2015 LA - en ID - 10_4064_aa8305_12_2015 ER -
%0 Journal Article %A Michael A. Bennett %A Vandita Patel %A Samir Siksek %T Superelliptic equations arising from sums of consecutive powers %J Acta Arithmetica %D 2016 %P 377-393 %V 172 %N 4 %U http://geodesic.mathdoc.fr/articles/10.4064/aa8305-12-2015/ %R 10.4064/aa8305-12-2015 %G en %F 10_4064_aa8305_12_2015
Michael A. Bennett; Vandita Patel; Samir Siksek. Superelliptic equations arising from sums of consecutive powers. Acta Arithmetica, Tome 172 (2016) no. 4, pp. 377-393. doi: 10.4064/aa8305-12-2015
Cité par Sources :