Superelliptic equations arising from sums of consecutive powers
Acta Arithmetica, Tome 172 (2016) no. 4, pp. 377-393.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using only elementary arguments, Cassels solved the Diophantine equation $(x-1)^3+x^3+(x+1)^3=z^2$ (with $x, z \in \mathbb Z$). The generalization $(x-1)^k+x^k+(x+1)^k=z^n$ (with $x, z, n\in \mathbb Z$ and $n\ge 2$) was considered by Zhongfeng Zhang who solved it for $k \in \{ 2, 3, 4 \}$ using Frey–Hellegouarch curves and their corresponding Galois representations. In this paper, by employing some sophisticated refinements of this approach, we show that the only solutions for $k=5$ have $x=z=0$, and that there are no solutions for $k=6$. The chief innovation we employ is a computational one, which enables us to avoid the full computation of data about cuspidal newforms of high level.
DOI : 10.4064/aa8305-12-2015
Keywords: using only elementary arguments cassels solved diophantine equation x mathbb generalization x mathbb considered zhongfeng zhang who solved using frey hellegouarch curves their corresponding galois representations paper employing sophisticated refinements approach only solutions have there solutions chief innovation employ computational which enables avoid full computation about cuspidal newforms high level

Michael A. Bennett 1 ; Vandita Patel 2 ; Samir Siksek 2

1 Department of Mathematics University of British Columbia Vancouver, BC, V6T 1Z2 Canada
2 Mathematics Institute University of Warwick Coventry CV4 7AL, United Kingdom
@article{10_4064_aa8305_12_2015,
     author = {Michael A. Bennett and Vandita Patel and Samir Siksek},
     title = {Superelliptic equations arising from sums of consecutive powers},
     journal = {Acta Arithmetica},
     pages = {377--393},
     publisher = {mathdoc},
     volume = {172},
     number = {4},
     year = {2016},
     doi = {10.4064/aa8305-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8305-12-2015/}
}
TY  - JOUR
AU  - Michael A. Bennett
AU  - Vandita Patel
AU  - Samir Siksek
TI  - Superelliptic equations arising from sums of consecutive powers
JO  - Acta Arithmetica
PY  - 2016
SP  - 377
EP  - 393
VL  - 172
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8305-12-2015/
DO  - 10.4064/aa8305-12-2015
LA  - en
ID  - 10_4064_aa8305_12_2015
ER  - 
%0 Journal Article
%A Michael A. Bennett
%A Vandita Patel
%A Samir Siksek
%T Superelliptic equations arising from sums of consecutive powers
%J Acta Arithmetica
%D 2016
%P 377-393
%V 172
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8305-12-2015/
%R 10.4064/aa8305-12-2015
%G en
%F 10_4064_aa8305_12_2015
Michael A. Bennett; Vandita Patel; Samir Siksek. Superelliptic equations arising from sums of consecutive powers. Acta Arithmetica, Tome 172 (2016) no. 4, pp. 377-393. doi : 10.4064/aa8305-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/aa8305-12-2015/

Cité par Sources :