Decaying and non-decaying badly approximable numbers
Acta Arithmetica, Tome 177 (2017) no. 2, pp. 143-152
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We call a badly approximable number decaying if, roughly, the Lagrange constants of integer multiples of that number decay as fast as possible. In this terminology, a question of Y. Bugeaud (2015) asks to find the Hausdorff dimension of the set of decaying badly approximable numbers, and also of the set of badly approximable numbers which are not decaying. We answer both questions, showing that the Hausdorff dimensions of both sets are equal to $1$. Part of our proof utilizes a game which combines the Banach–Mazur game and Schmidt’s game, first introduced in Fishman, Reams, and Simmons (2016).
Keywords:
call badly approximable number decaying roughly lagrange constants integer multiples number decay fast possible terminology question bugeaud asks hausdorff dimension set decaying badly approximable numbers set badly approximable numbers which decaying answer questions showing hausdorff dimensions sets equal part proof utilizes game which combines banach mazur game schmidt game first introduced fishman reams simmons
Affiliations des auteurs :
Ryan Broderick 1 ; Lior Fishman 2 ; David Simmons 3
@article{10_4064_aa8281_10_2016,
author = {Ryan Broderick and Lior Fishman and David Simmons},
title = {Decaying and non-decaying badly approximable numbers},
journal = {Acta Arithmetica},
pages = {143--152},
publisher = {mathdoc},
volume = {177},
number = {2},
year = {2017},
doi = {10.4064/aa8281-10-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8281-10-2016/}
}
TY - JOUR AU - Ryan Broderick AU - Lior Fishman AU - David Simmons TI - Decaying and non-decaying badly approximable numbers JO - Acta Arithmetica PY - 2017 SP - 143 EP - 152 VL - 177 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8281-10-2016/ DO - 10.4064/aa8281-10-2016 LA - en ID - 10_4064_aa8281_10_2016 ER -
%0 Journal Article %A Ryan Broderick %A Lior Fishman %A David Simmons %T Decaying and non-decaying badly approximable numbers %J Acta Arithmetica %D 2017 %P 143-152 %V 177 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8281-10-2016/ %R 10.4064/aa8281-10-2016 %G en %F 10_4064_aa8281_10_2016
Ryan Broderick; Lior Fishman; David Simmons. Decaying and non-decaying badly approximable numbers. Acta Arithmetica, Tome 177 (2017) no. 2, pp. 143-152. doi: 10.4064/aa8281-10-2016
Cité par Sources :