Elliptic curves with maximally disjoint division fields
Acta Arithmetica, Tome 175 (2016) no. 3, pp. 211-223.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

One of the many interesting algebraic objects associated to a given elliptic curve defined over the rational numbers, $E / \mathbb Q$, is its full-torsion representation $\rho_E:\operatorname{Gal}(\bar{\mathbb Q}/\mathbb Q)\to\operatorname{GL}_2(\hat{\mathbb Z})$. Generalizing this idea, one can create another full-torsion Galois representation $\rho_{(E_1,E_2)}:\operatorname{Gal}(\bar{\mathbb Q}/\mathbb Q)\to(\operatorname{GL}_2(\hat{\mathbb Z}))^2$ associated to a pair $(E_1,E_2)$ of elliptic curves defined over $\mathbb Q$. The goal of this paper is to provide an infinite number of concrete examples of pairs of elliptic curves whose associated full-torsion Galois representation $\rho_{(E_1,E_2)}$ has maximal image. The size of the image is inversely related to the size of the intersection of various division fields defined by $E_1$ and $E_2$. The representation $\rho_{(E_1,E_2)}$ has maximal image when these division fields are maximally disjoint, and most of the paper is devoted to studying these intersections.
DOI : 10.4064/aa8275-7-2016
Keywords: many interesting algebraic objects associated given elliptic curve defined rational numbers mathbb its full torsion representation rho operatorname gal bar mathbb mathbb operatorname hat mathbb generalizing idea create another full torsion galois representation rho operatorname gal bar mathbb mathbb operatorname hat mathbb associated pair elliptic curves defined mathbb paper provide infinite number concrete examples pairs elliptic curves whose associated full torsion galois representation rho has maximal image size image inversely related size intersection various division fields defined representation rho has maximal image these division fields maximally disjoint paper devoted studying these intersections

Harris B. Daniels 1 ; Jeffrey Hatley 2 ; James Ricci 3

1 Department of Mathematics Amherst College Box 2239 Amherst, MA 01002-5000, U.S.A.
2 Department of Mathematics Union College Bailey Hall 202 Schenectady, NY 12308, U.S.A.
3 Department of Mathematics and Computer Science Daemen College Duns Scotus 339 4380 Main Street Amherst, NY 14226, U.S.A.
@article{10_4064_aa8275_7_2016,
     author = {Harris B. Daniels and Jeffrey Hatley and James Ricci},
     title = {Elliptic curves with maximally disjoint division fields},
     journal = {Acta Arithmetica},
     pages = {211--223},
     publisher = {mathdoc},
     volume = {175},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8275-7-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8275-7-2016/}
}
TY  - JOUR
AU  - Harris B. Daniels
AU  - Jeffrey Hatley
AU  - James Ricci
TI  - Elliptic curves with maximally disjoint division fields
JO  - Acta Arithmetica
PY  - 2016
SP  - 211
EP  - 223
VL  - 175
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8275-7-2016/
DO  - 10.4064/aa8275-7-2016
LA  - en
ID  - 10_4064_aa8275_7_2016
ER  - 
%0 Journal Article
%A Harris B. Daniels
%A Jeffrey Hatley
%A James Ricci
%T Elliptic curves with maximally disjoint division fields
%J Acta Arithmetica
%D 2016
%P 211-223
%V 175
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8275-7-2016/
%R 10.4064/aa8275-7-2016
%G en
%F 10_4064_aa8275_7_2016
Harris B. Daniels; Jeffrey Hatley; James Ricci. Elliptic curves with maximally disjoint division fields. Acta Arithmetica, Tome 175 (2016) no. 3, pp. 211-223. doi : 10.4064/aa8275-7-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8275-7-2016/

Cité par Sources :