Average $r$-rank Artin conjecture
Acta Arithmetica, Tome 174 (2016) no. 3, pp. 255-276.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\varGamma\subset\mathbb Q^*$ be a finitely generated subgroup and let $p$ be a prime such that the reduction group $\varGamma_p$ is a well defined subgroup of the multiplicative group $\mathbb F_p^*$. We prove an asymptotic formula for the average of the number of primes $p\le x$ for which $[\mathbb F_p^*:\varGamma_p]=m$. The average is taken over all finitely generated subgroups $\varGamma=\langle a_1,\dots,a_r \rangle\subset\mathbb Q^*$, with $a_i\in\mathbb Z$ and $a_i\le T_i$, with a range of uniformity $T_i \gt \exp(4(\log x \log\log x)^{{1}/{2}})$ for every $i=1,\dots,r$. We also prove an asymptotic formula for the mean square of the error terms in the asymptotic formula with a similar range of uniformity. The case of rank $1$ and $m=1$ corresponds to Artin’s classical conjecture for primitive roots and was already considered by Stephens in 1969.
DOI : 10.4064/aa8258-4-2016
Keywords: vargamma subset mathbb * finitely generated subgroup prime reduction group vargamma defined subgroup multiplicative group mathbb * prove asymptotic formula average number primes which mathbb * vargamma average taken finitely generated subgroups vargamma langle dots rangle subset mathbb * mathbb range uniformity exp log log log every dots prove asymptotic formula mean square error terms asymptotic formula similar range uniformity rank corresponds artin classical conjecture primitive roots already considered stephens

Lorenzo Menici 1 ; Cihan Pehlivan 2

1 Dipartimento di Matematica Università Roma Tre Largo S. L. Murialdo, 1 I-00146 Roma, Italy
2 Department of Mathematics Koc University Rumelifeneri Yolu 34450 Sarıyer-İstanbul, Turkey
@article{10_4064_aa8258_4_2016,
     author = {Lorenzo Menici and Cihan Pehlivan},
     title = {Average $r$-rank {Artin} conjecture},
     journal = {Acta Arithmetica},
     pages = {255--276},
     publisher = {mathdoc},
     volume = {174},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8258-4-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8258-4-2016/}
}
TY  - JOUR
AU  - Lorenzo Menici
AU  - Cihan Pehlivan
TI  - Average $r$-rank Artin conjecture
JO  - Acta Arithmetica
PY  - 2016
SP  - 255
EP  - 276
VL  - 174
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8258-4-2016/
DO  - 10.4064/aa8258-4-2016
LA  - en
ID  - 10_4064_aa8258_4_2016
ER  - 
%0 Journal Article
%A Lorenzo Menici
%A Cihan Pehlivan
%T Average $r$-rank Artin conjecture
%J Acta Arithmetica
%D 2016
%P 255-276
%V 174
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8258-4-2016/
%R 10.4064/aa8258-4-2016
%G en
%F 10_4064_aa8258_4_2016
Lorenzo Menici; Cihan Pehlivan. Average $r$-rank Artin conjecture. Acta Arithmetica, Tome 174 (2016) no. 3, pp. 255-276. doi : 10.4064/aa8258-4-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8258-4-2016/

Cité par Sources :