On exponents of modular subgroups generated by small consecutive integers
Acta Arithmetica, Tome 176 (2016) no. 4, pp. 321-342.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $D_B(n)=\lambda(n)/ E_B(n)$ where $\lambda(n)$ is the Carmichael function and $E_B(n)$ denotes the exponent of the subgroup of $\mathbb Z_n^*$ generated by the positive integers coprime to $n$ included in the interval $ [1, B]$. The values $D_B(n)$ play a significant role in primality testing and reduction of factoring $n$ to computing discrete logarithms in $\mathbb Z_n^*$ or to computing the corresponding values of Euler’s function $\phi$. We investigate the relation between $D_B(n)$ to $D_B(p)$ for prime divisors $p\,|\, n$ and the behaviour of $B$-special numbers (satisfying the condition $\operatorname{lcm}_{p\,|\, n} D_B(p)=D_B(n))$ on average. We prove the average bound for $D_B(n)$ over the special numbers. The estimates obtained imply an upper bound for the number of positive integers $ n\le x$ that might not be factored in deterministic subexponential time $\exp(T(x,u))$, where $T(x,u)=(\log x)^{1/u}(\log\log x)^{u-1}$, $3 \lt u \lt \varepsilon \log\log x /\!\log\log\log x$ and $\varepsilon$ is a sufficiently small positive constant.
DOI : 10.4064/aa8255-8-2016
Keywords: lambda where lambda carmichael function denotes exponent subgroup mathbb * generated positive integers coprime included interval values play significant role primality testing reduction factoring computing discrete logarithms mathbb * computing corresponding values euler function phi investigate relation between prime divisors behaviour b special numbers satisfying condition operatorname lcm average prove average bound special numbers estimates obtained imply upper bound number positive integers might factored deterministic subexponential time exp where log log log u varepsilon log log log log log varepsilon sufficiently small positive constant

Jacek Pomykała 1

1 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_aa8255_8_2016,
     author = {Jacek Pomyka{\l}a},
     title = {On exponents of modular subgroups generated by small consecutive integers},
     journal = {Acta Arithmetica},
     pages = {321--342},
     publisher = {mathdoc},
     volume = {176},
     number = {4},
     year = {2016},
     doi = {10.4064/aa8255-8-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8255-8-2016/}
}
TY  - JOUR
AU  - Jacek Pomykała
TI  - On exponents of modular subgroups generated by small consecutive integers
JO  - Acta Arithmetica
PY  - 2016
SP  - 321
EP  - 342
VL  - 176
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8255-8-2016/
DO  - 10.4064/aa8255-8-2016
LA  - en
ID  - 10_4064_aa8255_8_2016
ER  - 
%0 Journal Article
%A Jacek Pomykała
%T On exponents of modular subgroups generated by small consecutive integers
%J Acta Arithmetica
%D 2016
%P 321-342
%V 176
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8255-8-2016/
%R 10.4064/aa8255-8-2016
%G en
%F 10_4064_aa8255_8_2016
Jacek Pomykała. On exponents of modular subgroups generated by small consecutive integers. Acta Arithmetica, Tome 176 (2016) no. 4, pp. 321-342. doi : 10.4064/aa8255-8-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8255-8-2016/

Cité par Sources :