On a problem of Sidon for polynomials over finite fields
Acta Arithmetica, Tome 174 (2016) no. 3, pp. 239-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\omega$ be a sequence of positive integers. Given a positive
integer $n$, we define
\[
r_n(\omega) = | \{ (a,b)\in \mathbb{N}\times \mathbb{N}: a,b \in \omega,\, a+b = n,\, 0 \lt a \lt b \}|.
\]
S. Sidon conjectured that there exists a sequence $\omega$ such that
$r_n(\omega) \gt 0$ for all $n$ sufficiently large
and, for all $\epsilon \gt 0$,
\[
\lim_{n \rightarrow \infty} \frac{r_n(\omega)}{n^{\epsilon}} = 0.
\]
P. Erdős proved this conjecture by showing the existence
of a sequence $\omega$ of positive integers such that
\[
\log n \ll r_n(\omega) \ll \log n.
\]
In this paper, we prove an analogue of this conjecture in $\mathbb{F}_q[T]$,
where $\mathbb{F}_q$ is a finite field of $q$ elements.
More precisely, let $\omega$
be a sequence in $\mathbb{F}_q[T]$. Given a polynomial
$h\in\mathbb{F}_q[T]$, we define
\[ r_h(\omega) = |\{(f,g) \in \mathbb{F}_q[T]\times \mathbb{F}_q[T] : f,g\in \omega,\, f+g =h, \deg f, \deg g \leq \deg h,\, f\ne g\}|.
\]
We show that there exists a sequence $\omega$ of polynomials in $\mathbb{F}_q [T]$
such that
\[
\deg h \ll r_h(\omega) \ll \deg h
\]
for $\deg h$ tending to infinity.
Keywords:
omega sequence positive integers given positive integer define omega mathbb times mathbb omega sidon conjectured there exists sequence omega omega sufficiently large epsilon lim rightarrow infty frac omega epsilon erd proved conjecture showing existence sequence omega positive integers log omega log paper prove analogue conjecture mathbb where mathbb finite field elements precisely omega sequence mathbb given polynomial mathbb define omega mathbb times mathbb omega deg deg leq deg there exists sequence omega polynomials mathbb deg omega deg deg tending infinity
Affiliations des auteurs :
Wentang Kuo 1 ; Shuntaro Yamagishi 1
@article{10_4064_aa8252_3_2016,
author = {Wentang Kuo and Shuntaro Yamagishi},
title = {On a problem of {Sidon} for polynomials over finite fields},
journal = {Acta Arithmetica},
pages = {239--254},
publisher = {mathdoc},
volume = {174},
number = {3},
year = {2016},
doi = {10.4064/aa8252-3-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8252-3-2016/}
}
TY - JOUR AU - Wentang Kuo AU - Shuntaro Yamagishi TI - On a problem of Sidon for polynomials over finite fields JO - Acta Arithmetica PY - 2016 SP - 239 EP - 254 VL - 174 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8252-3-2016/ DO - 10.4064/aa8252-3-2016 LA - en ID - 10_4064_aa8252_3_2016 ER -
Wentang Kuo; Shuntaro Yamagishi. On a problem of Sidon for polynomials over finite fields. Acta Arithmetica, Tome 174 (2016) no. 3, pp. 239-254. doi: 10.4064/aa8252-3-2016
Cité par Sources :