Badly approximable points in twisted Diophantine approximation and Hausdorff dimension
Acta Arithmetica, Tome 177 (2017) no. 4, pp. 301-314
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For any $j_1,\ldots,j_n \gt 0$ with $\sum_{i=1}^nj_i=1$ and any $\theta\in\mathbb R^n$, let ${\mathrm{Bad}_{\theta}(j_1,\ldots,j_n)}$ denote the set of points $\eta\in\mathbb R^n$ for which $\max_{1\leq i\leq n}(\|q\theta_i-\eta_i\|^{1/j_i}) \gt c/q$ for some positive constant $c=c(\eta)$ and all $q\in\mathbb N$. These sets are the ‘twisted’ inhomogeneous analogue of $\mathrm{Bad}(j_1,\ldots,j_n)$ in the theory of simultaneous Diophantine approximation. It has been shown that they have full Hausdorff dimension in the non-weighted setting, i.e. provided that $j_i=1/n$, and in the weighted setting when $\theta$ is chosen from $\mathrm{Bad}(j_1,\ldots,j_n)$. We generalise these results by proving the full Hausdorff dimension in the weighted setting without any condition on $\theta$. Moreover, we prove $\dim(\mathrm{Bad}_{\theta}(j_1,\ldots,j_n)\cap\mathrm{Bad}(1,0,\ldots,0)\cap\cdots\cap\mathrm{Bad}(0,\ldots,0,1))=n$.
Keywords:
ldots sum theta mathbb mathrm bad theta ldots denote set points eta mathbb which max leq leq theta i eta positive constant eta mathbb these sets twisted inhomogeneous analogue mathrm bad ldots theory simultaneous diophantine approximation has shown have full hausdorff dimension non weighted setting provided weighted setting theta chosen mathrm bad ldots generalise these results proving full hausdorff dimension weighted setting without condition theta moreover prove dim mathrm bad theta ldots cap mathrm bad ldots cap cdots cap mathrm bad ldots
Affiliations des auteurs :
Paloma Bengoechea 1 ; Nikolay Moshchevitin 2
@article{10_4064_aa8234_11_2016,
author = {Paloma Bengoechea and Nikolay Moshchevitin},
title = {Badly approximable points in twisted {Diophantine} approximation and {Hausdorff} dimension},
journal = {Acta Arithmetica},
pages = {301--314},
publisher = {mathdoc},
volume = {177},
number = {4},
year = {2017},
doi = {10.4064/aa8234-11-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8234-11-2016/}
}
TY - JOUR AU - Paloma Bengoechea AU - Nikolay Moshchevitin TI - Badly approximable points in twisted Diophantine approximation and Hausdorff dimension JO - Acta Arithmetica PY - 2017 SP - 301 EP - 314 VL - 177 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8234-11-2016/ DO - 10.4064/aa8234-11-2016 LA - en ID - 10_4064_aa8234_11_2016 ER -
%0 Journal Article %A Paloma Bengoechea %A Nikolay Moshchevitin %T Badly approximable points in twisted Diophantine approximation and Hausdorff dimension %J Acta Arithmetica %D 2017 %P 301-314 %V 177 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8234-11-2016/ %R 10.4064/aa8234-11-2016 %G en %F 10_4064_aa8234_11_2016
Paloma Bengoechea; Nikolay Moshchevitin. Badly approximable points in twisted Diophantine approximation and Hausdorff dimension. Acta Arithmetica, Tome 177 (2017) no. 4, pp. 301-314. doi: 10.4064/aa8234-11-2016
Cité par Sources :