Badly approximable points in twisted Diophantine approximation and Hausdorff dimension
Acta Arithmetica, Tome 177 (2017) no. 4, pp. 301-314.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any $j_1,\ldots,j_n \gt 0$ with $\sum_{i=1}^nj_i=1$ and any $\theta\in\mathbb R^n$, let ${\mathrm{Bad}_{\theta}(j_1,\ldots,j_n)}$ denote the set of points $\eta\in\mathbb R^n$ for which $\max_{1\leq i\leq n}(\|q\theta_i-\eta_i\|^{1/j_i}) \gt c/q$ for some positive constant $c=c(\eta)$ and all $q\in\mathbb N$. These sets are the ‘twisted’ inhomogeneous analogue of $\mathrm{Bad}(j_1,\ldots,j_n)$ in the theory of simultaneous Diophantine approximation. It has been shown that they have full Hausdorff dimension in the non-weighted setting, i.e. provided that $j_i=1/n$, and in the weighted setting when $\theta$ is chosen from $\mathrm{Bad}(j_1,\ldots,j_n)$. We generalise these results by proving the full Hausdorff dimension in the weighted setting without any condition on $\theta$. Moreover, we prove $\dim(\mathrm{Bad}_{\theta}(j_1,\ldots,j_n)\cap\mathrm{Bad}(1,0,\ldots,0)\cap\cdots\cap\mathrm{Bad}(0,\ldots,0,1))=n$.
DOI : 10.4064/aa8234-11-2016
Keywords: ldots sum theta mathbb mathrm bad theta ldots denote set points eta mathbb which max leq leq theta i eta positive constant eta mathbb these sets twisted inhomogeneous analogue mathrm bad ldots theory simultaneous diophantine approximation has shown have full hausdorff dimension non weighted setting provided weighted setting theta chosen mathrm bad ldots generalise these results proving full hausdorff dimension weighted setting without condition theta moreover prove dim mathrm bad theta ldots cap mathrm bad ldots cap cdots cap mathrm bad ldots

Paloma Bengoechea 1 ; Nikolay Moshchevitin 2

1 Department of Mathematics ETH Zürich Ramistrasse 101 8092 Zürich, Switzerland
2 Faculty of Mathematics and Mechanics Moscow State University Leninskie Gory 1 GZ MGU, 119991 Moscow, Russia
@article{10_4064_aa8234_11_2016,
     author = {Paloma Bengoechea and Nikolay Moshchevitin},
     title = {Badly approximable points in twisted {Diophantine} approximation and {Hausdorff} dimension},
     journal = {Acta Arithmetica},
     pages = {301--314},
     publisher = {mathdoc},
     volume = {177},
     number = {4},
     year = {2017},
     doi = {10.4064/aa8234-11-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8234-11-2016/}
}
TY  - JOUR
AU  - Paloma Bengoechea
AU  - Nikolay Moshchevitin
TI  - Badly approximable points in twisted Diophantine approximation and Hausdorff dimension
JO  - Acta Arithmetica
PY  - 2017
SP  - 301
EP  - 314
VL  - 177
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8234-11-2016/
DO  - 10.4064/aa8234-11-2016
LA  - en
ID  - 10_4064_aa8234_11_2016
ER  - 
%0 Journal Article
%A Paloma Bengoechea
%A Nikolay Moshchevitin
%T Badly approximable points in twisted Diophantine approximation and Hausdorff dimension
%J Acta Arithmetica
%D 2017
%P 301-314
%V 177
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8234-11-2016/
%R 10.4064/aa8234-11-2016
%G en
%F 10_4064_aa8234_11_2016
Paloma Bengoechea; Nikolay Moshchevitin. Badly approximable points in twisted Diophantine approximation and Hausdorff dimension. Acta Arithmetica, Tome 177 (2017) no. 4, pp. 301-314. doi : 10.4064/aa8234-11-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8234-11-2016/

Cité par Sources :