On the representation of numbers by quaternary and quinary cubic forms: I
Acta Arithmetica, Tome 173 (2016) no. 1, pp. 19-39.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

On the assumption of a Riemann hypothesis for certain Hasse–Weil $L$-functions, it is shewn that a quaternary cubic form $f(\boldsymbol{x})$ with rational integral coefficients and non-vanishing discriminant represents through integral vectors $\boldsymbol{x}$ almost all integers $N$ having the (necessary) property that the equation $f(\boldsymbol{x})=N$ is soluble in every $p$-adic field $\mathbb{Q}_p.$ The corresponding proposition for quinary forms is established unconditionally.
DOI : 10.4064/aa8189-1-2016
Keywords: assumption riemann hypothesis certain hasse weil l functions shewn quaternary cubic form boldsymbol rational integral coefficients non vanishing discriminant represents through integral vectors boldsymbol almost integers having necessary property equation boldsymbol soluble every p adic field mathbb corresponding proposition quinary forms established unconditionally

C. Hooley 1

1 School of Mathematics Cardiff University Senghennydd Road Cardiff CF24 4AG, United Kingdom
@article{10_4064_aa8189_1_2016,
     author = {C. Hooley},
     title = {On the representation of numbers by quaternary and quinary cubic forms: {I}},
     journal = {Acta Arithmetica},
     pages = {19--39},
     publisher = {mathdoc},
     volume = {173},
     number = {1},
     year = {2016},
     doi = {10.4064/aa8189-1-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8189-1-2016/}
}
TY  - JOUR
AU  - C. Hooley
TI  - On the representation of numbers by quaternary and quinary cubic forms: I
JO  - Acta Arithmetica
PY  - 2016
SP  - 19
EP  - 39
VL  - 173
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8189-1-2016/
DO  - 10.4064/aa8189-1-2016
LA  - en
ID  - 10_4064_aa8189_1_2016
ER  - 
%0 Journal Article
%A C. Hooley
%T On the representation of numbers by quaternary and quinary cubic forms: I
%J Acta Arithmetica
%D 2016
%P 19-39
%V 173
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8189-1-2016/
%R 10.4064/aa8189-1-2016
%G en
%F 10_4064_aa8189_1_2016
C. Hooley. On the representation of numbers by quaternary and quinary cubic forms: I. Acta Arithmetica, Tome 173 (2016) no. 1, pp. 19-39. doi : 10.4064/aa8189-1-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8189-1-2016/

Cité par Sources :