On the representation of friable integers by linear forms
Acta Arithmetica, Tome 181 (2017) no. 2, pp. 97-109
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $P^+(n)$ denote the largest prime factor of the integer $n$. Using the nilpotent Hardy–Littlewood method developed by Green and Tao, we give an asymptotic formula for $$
\varPsi_{F_1\cdots F_t}(\mathcal{K}\cap[-N,N]^d,N^{1/u})
:=
\#\{\boldsymbol{n}\in \mathcal{K}\cap[-N,N]^d:\vphantom{P^+(F_1(\boldsymbol{n})\cdots F_t(\boldsymbol{n}))\leq N^{1/u}}
P^+(F_1(\boldsymbol{n})\cdots F_t(\boldsymbol{n}))\leq N^{1/u}\}
$$ where $(F_1,\ldots,F_t)$ is a system of affine-linear forms on $\mathbb{Z}[X_1,\ldots,X_d]$ no two of which are affinely related, and $\mathcal{K}$ is a convex body. This improves upon Balog, Blomer, Dartyge and Tenenbaum’s work [Comment. Math. Helv. 87 (2012)] in the case of products of linear forms.
Keywords:
denote largest prime factor integer using nilpotent hardy littlewood method developed green tao asymptotic formula varpsi cdots mathcal cap n boldsymbol mathcal cap n vphantom boldsymbol cdots boldsymbol leq boldsymbol cdots boldsymbol leq where ldots system affine linear forms mathbb ldots which affinely related mathcal convex body improves balog blomer dartyge tenenbaum work nbsp comment math helv products linear forms
Affiliations des auteurs :
Armand Lachand  1
@article{10_4064_aa8153_9_2017,
author = {Armand Lachand},
title = {On the representation of friable integers by linear forms},
journal = {Acta Arithmetica},
pages = {97--109},
year = {2017},
volume = {181},
number = {2},
doi = {10.4064/aa8153-9-2017},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8153-9-2017/}
}
Armand Lachand. On the representation of friable integers by linear forms. Acta Arithmetica, Tome 181 (2017) no. 2, pp. 97-109. doi: 10.4064/aa8153-9-2017
Cité par Sources :