On the representation of friable integers by linear forms
Acta Arithmetica, Tome 181 (2017) no. 2, pp. 97-109.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $P^+(n)$ denote the largest prime factor of the integer $n$. Using the nilpotent Hardy–Littlewood method developed by Green and Tao, we give an asymptotic formula for $$ \varPsi_{F_1\cdots F_t}(\mathcal{K}\cap[-N,N]^d,N^{1/u}) := \#\{\boldsymbol{n}\in \mathcal{K}\cap[-N,N]^d:\vphantom{P^+(F_1(\boldsymbol{n})\cdots F_t(\boldsymbol{n}))\leq N^{1/u}} P^+(F_1(\boldsymbol{n})\cdots F_t(\boldsymbol{n}))\leq N^{1/u}\} $$ where $(F_1,\ldots,F_t)$ is a system of affine-linear forms on $\mathbb{Z}[X_1,\ldots,X_d]$ no two of which are affinely related, and $\mathcal{K}$ is a convex body. This improves upon Balog, Blomer, Dartyge and Tenenbaum’s work [Comment. Math. Helv. 87 (2012)] in the case of products of linear forms.
DOI : 10.4064/aa8153-9-2017
Keywords: denote largest prime factor integer using nilpotent hardy littlewood method developed green tao asymptotic formula varpsi cdots mathcal cap n boldsymbol mathcal cap n vphantom boldsymbol cdots boldsymbol leq boldsymbol cdots boldsymbol leq where ldots system affine linear forms mathbb ldots which affinely related mathcal convex body improves balog blomer dartyge tenenbaum work nbsp comment math helv products linear forms

Armand Lachand 1

1 Institut Élie Cartan Université de Lorraine B.P. 70239 54506 Vandœuvre-lès-Nancy Cedex, France
@article{10_4064_aa8153_9_2017,
     author = {Armand Lachand},
     title = {On the representation of friable integers by linear forms},
     journal = {Acta Arithmetica},
     pages = {97--109},
     publisher = {mathdoc},
     volume = {181},
     number = {2},
     year = {2017},
     doi = {10.4064/aa8153-9-2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8153-9-2017/}
}
TY  - JOUR
AU  - Armand Lachand
TI  - On the representation of friable integers by linear forms
JO  - Acta Arithmetica
PY  - 2017
SP  - 97
EP  - 109
VL  - 181
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8153-9-2017/
DO  - 10.4064/aa8153-9-2017
LA  - en
ID  - 10_4064_aa8153_9_2017
ER  - 
%0 Journal Article
%A Armand Lachand
%T On the representation of friable integers by linear forms
%J Acta Arithmetica
%D 2017
%P 97-109
%V 181
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8153-9-2017/
%R 10.4064/aa8153-9-2017
%G en
%F 10_4064_aa8153_9_2017
Armand Lachand. On the representation of friable integers by linear forms. Acta Arithmetica, Tome 181 (2017) no. 2, pp. 97-109. doi : 10.4064/aa8153-9-2017. http://geodesic.mathdoc.fr/articles/10.4064/aa8153-9-2017/

Cité par Sources :