Rational torsion points on Jacobians of modular curves
Acta Arithmetica, Tome 172 (2016) no. 4, pp. 299-304
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $p$ be a prime greater than 3. Consider the modular curve $X_0(3p)$ over $\mathbb Q$ and its Jacobian variety $J_0(3p)$ over $\mathbb Q$. Let $\mathcal T(3p)$ and $\mathcal C(3p)$ be the group of rational torsion points on $J_0(3p)$ and the cuspidal group of $J_0(3p)$, respectively. We prove that the $3$-primary subgroups of $\mathcal T(3p)$ and $\mathcal C(3p)$ coincide unless $p\equiv 1 \pmod 9$ and $3^{(p-1)/3} \equiv 1 \pmod {p}$.
Keywords:
prime greater consider modular curve mathbb its jacobian variety mathbb mathcal mathcal group rational torsion points cuspidal group respectively prove primary subgroups mathcal mathcal coincide unless equiv pmod p equiv pmod
Affiliations des auteurs :
Hwajong Yoo 1
@article{10_4064_aa8140_12_2015,
author = {Hwajong Yoo},
title = {Rational torsion points on {Jacobians} of modular curves},
journal = {Acta Arithmetica},
pages = {299--304},
publisher = {mathdoc},
volume = {172},
number = {4},
year = {2016},
doi = {10.4064/aa8140-12-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8140-12-2015/}
}
Hwajong Yoo. Rational torsion points on Jacobians of modular curves. Acta Arithmetica, Tome 172 (2016) no. 4, pp. 299-304. doi: 10.4064/aa8140-12-2015
Cité par Sources :