Rational torsion points on Jacobians of modular curves
Acta Arithmetica, Tome 172 (2016) no. 4, pp. 299-304.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $p$ be a prime greater than 3. Consider the modular curve $X_0(3p)$ over $\mathbb Q$ and its Jacobian variety $J_0(3p)$ over $\mathbb Q$. Let $\mathcal T(3p)$ and $\mathcal C(3p)$ be the group of rational torsion points on $J_0(3p)$ and the cuspidal group of $J_0(3p)$, respectively. We prove that the $3$-primary subgroups of $\mathcal T(3p)$ and $\mathcal C(3p)$ coincide unless $p\equiv 1 \pmod 9$ and $3^{(p-1)/3} \equiv 1 \pmod {p}$.
DOI : 10.4064/aa8140-12-2015
Keywords: prime greater consider modular curve mathbb its jacobian variety mathbb mathcal mathcal group rational torsion points cuspidal group respectively prove primary subgroups mathcal mathcal coincide unless equiv pmod p equiv pmod

Hwajong Yoo 1

1 Center for Geometry and Physics Institute for Basic Science (IBS) Pohang 37673, Republic of Korea
@article{10_4064_aa8140_12_2015,
     author = {Hwajong Yoo},
     title = {Rational torsion points on {Jacobians} of modular curves},
     journal = {Acta Arithmetica},
     pages = {299--304},
     publisher = {mathdoc},
     volume = {172},
     number = {4},
     year = {2016},
     doi = {10.4064/aa8140-12-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8140-12-2015/}
}
TY  - JOUR
AU  - Hwajong Yoo
TI  - Rational torsion points on Jacobians of modular curves
JO  - Acta Arithmetica
PY  - 2016
SP  - 299
EP  - 304
VL  - 172
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8140-12-2015/
DO  - 10.4064/aa8140-12-2015
LA  - en
ID  - 10_4064_aa8140_12_2015
ER  - 
%0 Journal Article
%A Hwajong Yoo
%T Rational torsion points on Jacobians of modular curves
%J Acta Arithmetica
%D 2016
%P 299-304
%V 172
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8140-12-2015/
%R 10.4064/aa8140-12-2015
%G en
%F 10_4064_aa8140_12_2015
Hwajong Yoo. Rational torsion points on Jacobians of modular curves. Acta Arithmetica, Tome 172 (2016) no. 4, pp. 299-304. doi : 10.4064/aa8140-12-2015. http://geodesic.mathdoc.fr/articles/10.4064/aa8140-12-2015/

Cité par Sources :