On the subset sums of exponential type sequences
Acta Arithmetica, Tome 173 (2016) no. 2, pp. 141-150
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a sequence $A\subseteq \mathbb{N}$, let $P(A)$ be the set of
all sums of distinct terms taken from $A$. The sequence $A$ is
said to be \lt i \gt complete \lt /i \gt if $P(A)$ contains all sufficiently
large integers. Let $p \gt 1$ be an integer. The following main results are proved: (a) Let $A_t=\{
a_1\le \dots \le a_t\}$ be any sequence of positive integers (not
necessarily distinct), $S_p=\{ p^i : i=0, 1, \dots \} $ and $S_p
A_t=\{ p^i a_j : i=0, 1, \dots; \, j=1, \dots , t\}$. When $t\ge
p-1$, the sequence $P(S_pA_t)$ has positive lower asymptotic
density not less than $1/a_{p-1}$. The lower bounds $p-1$ and $1/a_{p-1}$ are both the best possible. (b) For any positive integer $k$, the
sequence $\{ p^i F_j : i=0, 1, \dots ;\, j=k, k+1, \dots , n\}$ is
complete, where $F_j$ is the $j$th Fibonacci number and $n=p^2
F_{k+2p-1}^2$.
Keywords:
sequence subseteq mathbb set sums distinct terms taken sequence said complete contains sufficiently large integers integer following main results proved dots sequence positive integers necessarily distinct dots t j dots dots p sequence has positive lower asymptotic density p lower bounds p p best possible positive integer sequence j dots dots complete where jth fibonacci number p
Affiliations des auteurs :
Yong-Gao Chen 1 ; Jin-Hui Fang 2 ; Norbert Hegyvári 3
@article{10_4064_aa8133_3_2016,
author = {Yong-Gao Chen and Jin-Hui Fang and Norbert Hegyv\'ari},
title = {On the subset sums of exponential type sequences},
journal = {Acta Arithmetica},
pages = {141--150},
publisher = {mathdoc},
volume = {173},
number = {2},
year = {2016},
doi = {10.4064/aa8133-3-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8133-3-2016/}
}
TY - JOUR AU - Yong-Gao Chen AU - Jin-Hui Fang AU - Norbert Hegyvári TI - On the subset sums of exponential type sequences JO - Acta Arithmetica PY - 2016 SP - 141 EP - 150 VL - 173 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8133-3-2016/ DO - 10.4064/aa8133-3-2016 LA - en ID - 10_4064_aa8133_3_2016 ER -
%0 Journal Article %A Yong-Gao Chen %A Jin-Hui Fang %A Norbert Hegyvári %T On the subset sums of exponential type sequences %J Acta Arithmetica %D 2016 %P 141-150 %V 173 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa8133-3-2016/ %R 10.4064/aa8133-3-2016 %G en %F 10_4064_aa8133_3_2016
Yong-Gao Chen; Jin-Hui Fang; Norbert Hegyvári. On the subset sums of exponential type sequences. Acta Arithmetica, Tome 173 (2016) no. 2, pp. 141-150. doi: 10.4064/aa8133-3-2016
Cité par Sources :