On the subset sums of exponential type sequences
Acta Arithmetica, Tome 173 (2016) no. 2, pp. 141-150.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a sequence $A\subseteq \mathbb{N}$, let $P(A)$ be the set of all sums of distinct terms taken from $A$. The sequence $A$ is said to be \lt i \gt complete \lt /i \gt if $P(A)$ contains all sufficiently large integers. Let $p \gt 1$ be an integer. The following main results are proved: (a) Let $A_t=\{ a_1\le \dots \le a_t\}$ be any sequence of positive integers (not necessarily distinct), $S_p=\{ p^i : i=0, 1, \dots \} $ and $S_p A_t=\{ p^i a_j : i=0, 1, \dots; \, j=1, \dots , t\}$. When $t\ge p-1$, the sequence $P(S_pA_t)$ has positive lower asymptotic density not less than $1/a_{p-1}$. The lower bounds $p-1$ and $1/a_{p-1}$ are both the best possible. (b) For any positive integer $k$, the sequence $\{ p^i F_j : i=0, 1, \dots ;\, j=k, k+1, \dots , n\}$ is complete, where $F_j$ is the $j$th Fibonacci number and $n=p^2 F_{k+2p-1}^2$.
DOI : 10.4064/aa8133-3-2016
Keywords: sequence subseteq mathbb set sums distinct terms taken sequence said complete contains sufficiently large integers integer following main results proved dots sequence positive integers necessarily distinct dots t j dots dots p sequence has positive lower asymptotic density p lower bounds p p best possible positive integer sequence j dots dots complete where jth fibonacci number p

Yong-Gao Chen 1 ; Jin-Hui Fang 2 ; Norbert Hegyvári 3

1 School of Mathematical Sciences and Institute of Mathematics Nanjing Normal University Nanjing 210023, P.R. China
2 Department of Mathematics Nanjing University of Information Science and Technology Nanjing 210044, P.R. China
3 ELTE TTK Eötvös University Institute of Mathematics Pázmány St. 1/c H-1117 Budapest, Hungary
@article{10_4064_aa8133_3_2016,
     author = {Yong-Gao Chen and Jin-Hui Fang and Norbert Hegyv\'ari},
     title = {On the subset sums of exponential type sequences},
     journal = {Acta Arithmetica},
     pages = {141--150},
     publisher = {mathdoc},
     volume = {173},
     number = {2},
     year = {2016},
     doi = {10.4064/aa8133-3-2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8133-3-2016/}
}
TY  - JOUR
AU  - Yong-Gao Chen
AU  - Jin-Hui Fang
AU  - Norbert Hegyvári
TI  - On the subset sums of exponential type sequences
JO  - Acta Arithmetica
PY  - 2016
SP  - 141
EP  - 150
VL  - 173
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8133-3-2016/
DO  - 10.4064/aa8133-3-2016
LA  - en
ID  - 10_4064_aa8133_3_2016
ER  - 
%0 Journal Article
%A Yong-Gao Chen
%A Jin-Hui Fang
%A Norbert Hegyvári
%T On the subset sums of exponential type sequences
%J Acta Arithmetica
%D 2016
%P 141-150
%V 173
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8133-3-2016/
%R 10.4064/aa8133-3-2016
%G en
%F 10_4064_aa8133_3_2016
Yong-Gao Chen; Jin-Hui Fang; Norbert Hegyvári. On the subset sums of exponential type sequences. Acta Arithmetica, Tome 173 (2016) no. 2, pp. 141-150. doi : 10.4064/aa8133-3-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa8133-3-2016/

Cité par Sources :