Coppersmith–Rivlin type inequalities and the order of vanishing of polynomials at 1
Acta Arithmetica, Tome 172 (2016) no. 3, pp. 271-284
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
For $n \in {\mathbb N}$, $L \gt 0$, and $p \geq 1$ let $\kappa_p(n,L)$ be the largest possible value of $k$ for which there is a polynomial $P \not \equiv 0$ of the form
$$
P(x) = \sum_{j=0}^n{a_jx^j}, \quad |a_0| \geq L \Bigl( \sum_{j=1}^n{|a_j|^p} \Bigr)^{1/p}, \ \quad a_j \in {\mathbb C},
$$
such that $(x-1)^k$ divides $P(x)$. For $n \in {\mathbb N}$, $L \gt 0$, and $q \geq 1$ let $\mu_q(n,L)$ be the smallest value of $k$ for which there is a polynomial $Q$ of degree $k$ with complex coefficients such that
$$
|Q(0)| \gt \frac 1L \Bigl( \sum_{j=1}^n{|Q(j)|^q} \Bigr)^{1/q}.
$$
We find the size of $\kappa_p(n,L)$ and $\mu_q(n,L)$ for all $n \in {\mathbb N}$, $L \gt 0$, and ${1 \leq p,q \leq \infty}$. The result about $\mu_\infty(n,L)$ is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even in that special case.
Keywords:
mathbb geq kappa largest possible value which there polynomial equiv form sum quad geq bigl sum bigr quad mathbb x divides mathbb geq smallest value which there polynomial degree complex coefficients frac bigl sum bigr size kappa mathbb leq leq infty result about infty due coppersmith rivlin proof completely different much shorter even special
Affiliations des auteurs :
Tamás Erdélyi 1
@article{10_4064_aa8129_11_2015,
author = {Tam\'as Erd\'elyi},
title = {Coppersmith{\textendash}Rivlin type inequalities and the order of vanishing of polynomials at 1},
journal = {Acta Arithmetica},
pages = {271--284},
year = {2016},
volume = {172},
number = {3},
doi = {10.4064/aa8129-11-2015},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8129-11-2015/}
}
TY - JOUR AU - Tamás Erdélyi TI - Coppersmith–Rivlin type inequalities and the order of vanishing of polynomials at 1 JO - Acta Arithmetica PY - 2016 SP - 271 EP - 284 VL - 172 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa8129-11-2015/ DO - 10.4064/aa8129-11-2015 LA - en ID - 10_4064_aa8129_11_2015 ER -
Tamás Erdélyi. Coppersmith–Rivlin type inequalities and the order of vanishing of polynomials at 1. Acta Arithmetica, Tome 172 (2016) no. 3, pp. 271-284. doi: 10.4064/aa8129-11-2015
Cité par Sources :