Coppersmith–Rivlin type inequalities and the order of vanishing of polynomials at 1
Acta Arithmetica, Tome 172 (2016) no. 3, pp. 271-284.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For $n \in {\mathbb N}$, $L \gt 0$, and $p \geq 1$ let $\kappa_p(n,L)$ be the largest possible value of $k$ for which there is a polynomial $P \not \equiv 0$ of the form $$ P(x) = \sum_{j=0}^n{a_jx^j}, \quad |a_0| \geq L \Bigl( \sum_{j=1}^n{|a_j|^p} \Bigr)^{1/p}, \ \quad a_j \in {\mathbb C}, $$ such that $(x-1)^k$ divides $P(x)$. For $n \in {\mathbb N}$, $L \gt 0$, and $q \geq 1$ let $\mu_q(n,L)$ be the smallest value of $k$ for which there is a polynomial $Q$ of degree $k$ with complex coefficients such that $$ |Q(0)| \gt \frac 1L \Bigl( \sum_{j=1}^n{|Q(j)|^q} \Bigr)^{1/q}. $$ We find the size of $\kappa_p(n,L)$ and $\mu_q(n,L)$ for all $n \in {\mathbb N}$, $L \gt 0$, and ${1 \leq p,q \leq \infty}$. The result about $\mu_\infty(n,L)$ is due to Coppersmith and Rivlin, but our proof is completely different and much shorter even in that special case.
DOI : 10.4064/aa8129-11-2015
Keywords: mathbb geq kappa largest possible value which there polynomial equiv form sum quad geq bigl sum bigr quad mathbb x divides mathbb geq smallest value which there polynomial degree complex coefficients frac bigl sum bigr size kappa mathbb leq leq infty result about infty due coppersmith rivlin proof completely different much shorter even special

Tamás Erdélyi 1

1 Department of Mathematics Texas A&M University College Station, TX 77843, U.S.A.
@article{10_4064_aa8129_11_2015,
     author = {Tam\'as Erd\'elyi},
     title = {Coppersmith{\textendash}Rivlin type inequalities and the order of vanishing of polynomials at 1},
     journal = {Acta Arithmetica},
     pages = {271--284},
     publisher = {mathdoc},
     volume = {172},
     number = {3},
     year = {2016},
     doi = {10.4064/aa8129-11-2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8129-11-2015/}
}
TY  - JOUR
AU  - Tamás Erdélyi
TI  - Coppersmith–Rivlin type inequalities and the order of vanishing of polynomials at 1
JO  - Acta Arithmetica
PY  - 2016
SP  - 271
EP  - 284
VL  - 172
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa8129-11-2015/
DO  - 10.4064/aa8129-11-2015
LA  - en
ID  - 10_4064_aa8129_11_2015
ER  - 
%0 Journal Article
%A Tamás Erdélyi
%T Coppersmith–Rivlin type inequalities and the order of vanishing of polynomials at 1
%J Acta Arithmetica
%D 2016
%P 271-284
%V 172
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa8129-11-2015/
%R 10.4064/aa8129-11-2015
%G en
%F 10_4064_aa8129_11_2015
Tamás Erdélyi. Coppersmith–Rivlin type inequalities and the order of vanishing of polynomials at 1. Acta Arithmetica, Tome 172 (2016) no. 3, pp. 271-284. doi : 10.4064/aa8129-11-2015. http://geodesic.mathdoc.fr/articles/10.4064/aa8129-11-2015/

Cité par Sources :