On a generalization of the Beiter Conjecture
Acta Arithmetica, Tome 173 (2016) no. 2, pp. 133-140
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that for every $\varepsilon \gt 0$ and every nonnegative integer $w$ there exist primes $p_1,\ldots,p_w$ such that for $n=p_1\ldots p_w$ the height of the cyclotomic polynomial $\varPhi_n$ is at least $(1-\varepsilon)c_w M_n$, where $M_n=\prod_{i=1}^{w-2}p_i^{2^{w-1-i}-1}$ and $c_w$ is a constant depending only on $w$; furthermore $\lim_{w\to\infty}c_w^{2^{-w}}\approx0.71$. In our construction we can have $p_i \gt h(p_1\ldots p_{i-1})$ for all $i=1,\ldots,w$ and any function $h:\mathbb{R}_+\to\mathbb{R}_+$.
Keywords:
prove every varepsilon every nonnegative integer there exist primes ldots ldots height cyclotomic polynomial varphi least varepsilon n where prod w w i constant depending only furthermore lim infty w approx construction have ldots i ldots function mathbb mathbb
Affiliations des auteurs :
Bartłomiej Bzdęga 1
@article{10_4064_aa8119_1_2016,
author = {Bart{\l}omiej Bzd\k{e}ga},
title = {On a generalization of the {Beiter} {Conjecture}},
journal = {Acta Arithmetica},
pages = {133--140},
publisher = {mathdoc},
volume = {173},
number = {2},
year = {2016},
doi = {10.4064/aa8119-1-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa8119-1-2016/}
}
Bartłomiej Bzdęga. On a generalization of the Beiter Conjecture. Acta Arithmetica, Tome 173 (2016) no. 2, pp. 133-140. doi: 10.4064/aa8119-1-2016
Cité par Sources :