Lang’s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$
Acta Arithmetica, Tome 173 (2016) no. 3, pp. 197-224
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For $E_{b}: y^{2}=x^{3}+b$, we establish Lang’s conjecture on a lower bound for the canonical height of nontorsion points along with upper and lower bounds for the difference between the canonical and logarithmic heights. These results are either best possible or within a small constant of the best possible lower bounds.
Keywords:
establish lang conjecture lower bound canonical height nontorsion points along upper lower bounds difference between canonical logarithmic heights these results either best possible within small constant best possible lower bounds
Affiliations des auteurs :
Paul Voutier 1 ; Minoru Yabuta 2
@article{10_4064_aa7761_2_2016,
author = {Paul Voutier and Minoru Yabuta},
title = {Lang{\textquoteright}s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$},
journal = {Acta Arithmetica},
pages = {197--224},
publisher = {mathdoc},
volume = {173},
number = {3},
year = {2016},
doi = {10.4064/aa7761-2-2016},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa7761-2-2016/}
}
TY - JOUR
AU - Paul Voutier
AU - Minoru Yabuta
TI - Lang’s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$
JO - Acta Arithmetica
PY - 2016
SP - 197
EP - 224
VL - 173
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/aa7761-2-2016/
DO - 10.4064/aa7761-2-2016
LA - en
ID - 10_4064_aa7761_2_2016
ER -
%0 Journal Article
%A Paul Voutier
%A Minoru Yabuta
%T Lang’s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$
%J Acta Arithmetica
%D 2016
%P 197-224
%V 173
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa7761-2-2016/
%R 10.4064/aa7761-2-2016
%G en
%F 10_4064_aa7761_2_2016
Paul Voutier; Minoru Yabuta. Lang’s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$. Acta Arithmetica, Tome 173 (2016) no. 3, pp. 197-224. doi: 10.4064/aa7761-2-2016
Cité par Sources :