Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Paul Voutier 1 ; Minoru Yabuta 2
@article{10_4064_aa7761_2_2016, author = {Paul Voutier and Minoru Yabuta}, title = {Lang{\textquoteright}s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$}, journal = {Acta Arithmetica}, pages = {197--224}, publisher = {mathdoc}, volume = {173}, number = {3}, year = {2016}, doi = {10.4064/aa7761-2-2016}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa7761-2-2016/} }
TY - JOUR AU - Paul Voutier AU - Minoru Yabuta TI - Lang’s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$ JO - Acta Arithmetica PY - 2016 SP - 197 EP - 224 VL - 173 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa7761-2-2016/ DO - 10.4064/aa7761-2-2016 LA - en ID - 10_4064_aa7761_2_2016 ER -
%0 Journal Article %A Paul Voutier %A Minoru Yabuta %T Lang’s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$ %J Acta Arithmetica %D 2016 %P 197-224 %V 173 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa7761-2-2016/ %R 10.4064/aa7761-2-2016 %G en %F 10_4064_aa7761_2_2016
Paul Voutier; Minoru Yabuta. Lang’s conjecture and sharp height estimates for the elliptic curves $y^{2}=x^{3}+b$. Acta Arithmetica, Tome 173 (2016) no. 3, pp. 197-224. doi : 10.4064/aa7761-2-2016. http://geodesic.mathdoc.fr/articles/10.4064/aa7761-2-2016/
Cité par Sources :