Genus theory of $p$-adic pseudo-measures, Hilbert kernels and abelian $p$-ramification
Acta Arithmetica, Tome 218 (2025) no. 1, pp. 25-63
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider, for real abelian fields $K$, the Birch–Tate formula linking $\# {\bf K}_2({\bf Z}_K)$ to $\zeta _K(-1)$; we compare, for quadratic and cyclic cubic fields with $p \in \{2, 3\}$, $\# {\bf K}_2({\bf Z}_K)[p^\infty ]$ with the order of the torsion group $\mathcal T_{K, p}$ of abelian $p$-ramification theory, given, for all $p$, by the residue of $\zeta _{K, p}(s)$ at $s=1$. This is done, when $p\,|\, [K : \mathbb Q]$, via the “genus theory” of $p$-adic pseudo-measures, inaugurated in the 1970/80’s (Theorem A). We apply this to prove a conjecture of Deng–Li giving the structure of ${\bf K}_2({\bf Z}_K)[2^\infty ]$ for an interesting family of real quadratic fields (Theorem B). Then, for $p \geq 5$, we give a lower bound of ${\rm rk}_p({\bf K}_2({\bf Z}_K))$ in cyclic $p$-extensions $K/\mathbb Q$ (Theorem C). Complements, numerical illustrations and PARI programs are given in the Appendices.
Published in Open Access (under CC-BY license).
Keywords:
consider real abelian fields birch tate formula linking zeta compare quadratic cyclic cubic fields infty order torsion group mathcal abelian p ramification theory given residue zeta done mathbb via genus theory p adic pseudo measures inaugurated theorem apply prove conjecture deng giving structure infty interesting family real quadratic fields theorem geq lower bound cyclic p extensions mathbb theorem complements numerical illustrations pari programs given appendices
Affiliations des auteurs :
Georges Gras 1
@article{10_4064_aa240130_9_6,
author = {Georges Gras},
title = {Genus theory of $p$-adic pseudo-measures, {Hilbert} kernels and abelian $p$-ramification},
journal = {Acta Arithmetica},
pages = {25--63},
publisher = {mathdoc},
volume = {218},
number = {1},
year = {2025},
doi = {10.4064/aa240130-9-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa240130-9-6/}
}
TY - JOUR AU - Georges Gras TI - Genus theory of $p$-adic pseudo-measures, Hilbert kernels and abelian $p$-ramification JO - Acta Arithmetica PY - 2025 SP - 25 EP - 63 VL - 218 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa240130-9-6/ DO - 10.4064/aa240130-9-6 LA - en ID - 10_4064_aa240130_9_6 ER -
Georges Gras. Genus theory of $p$-adic pseudo-measures, Hilbert kernels and abelian $p$-ramification. Acta Arithmetica, Tome 218 (2025) no. 1, pp. 25-63. doi: 10.4064/aa240130-9-6
Cité par Sources :