Linear Diophantine equations in Piatetski-Shapiro sequences
Acta Arithmetica, Tome 200 (2021) no. 1, pp. 91-110
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Piatetski-Shapiro sequence with exponent $\alpha $ is the sequence of integer parts of $n^\alpha $ $(n = 1,2,\ldots )$ with a non-integral $\alpha \gt 0$. We let $\mathrm {PS}(\alpha )$ denote the set of those terms. In this article, we study the set of $\alpha $ such that the equation $ax + by = cz$ has infinitely many solutions $(x,y,z) \in \mathrm {PS}(\alpha )^3$ with $x,y,z$ pairwise distinct, and give a lower bound for its Hausdorff dimension. As a corollary, we find uncountably many $\alpha \gt 2$ such that $\mathrm {PS}(\alpha )$ contains infinitely many arithmetic progressions of length $3$.
Keywords:
piatetski shapiro sequence exponent alpha sequence integer parts alpha ldots non integral alpha mathrm alpha denote set those terms article study set alpha equation has infinitely many solutions mathrm alpha pairwise distinct lower bound its hausdorff dimension corollary uncountably many alpha mathrm alpha contains infinitely many arithmetic progressions length nbsp
Affiliations des auteurs :
Toshiki Matsusaka 1 ; Kota Saito 2
@article{10_4064_aa200927_15_2,
author = {Toshiki Matsusaka and Kota Saito},
title = {Linear {Diophantine} equations in {Piatetski-Shapiro} sequences},
journal = {Acta Arithmetica},
pages = {91--110},
publisher = {mathdoc},
volume = {200},
number = {1},
year = {2021},
doi = {10.4064/aa200927-15-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa200927-15-2/}
}
TY - JOUR AU - Toshiki Matsusaka AU - Kota Saito TI - Linear Diophantine equations in Piatetski-Shapiro sequences JO - Acta Arithmetica PY - 2021 SP - 91 EP - 110 VL - 200 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa200927-15-2/ DO - 10.4064/aa200927-15-2 LA - en ID - 10_4064_aa200927_15_2 ER -
Toshiki Matsusaka; Kota Saito. Linear Diophantine equations in Piatetski-Shapiro sequences. Acta Arithmetica, Tome 200 (2021) no. 1, pp. 91-110. doi: 10.4064/aa200927-15-2
Cité par Sources :