A Jarník-type theorem for a problem of approximation by cubic polynomials
Acta Arithmetica, Tome 193 (2020) no. 3, pp. 269-281.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a given decreasing positive real function $\psi $, let $\mathcal A _n(\psi )$ be the set of real numbers for which there are infinitely many integer polynomials $P$ of degree up to $n$ such that $| P(x) |\leq \psi ( \operatorname{H}(P))$. A theorem by Bernik states that $\mathcal A _n(\psi )$ has Hausdorff dimension $\frac {n+1}{w+1}$ in the special case $\psi (r) = r^{-w}$, while a theorem by Beresnevich, Dickinson and Velani implies that the Hausdorff measure satisfies $\mathcal{H} ^g(\mathcal A _n(\psi ))=\infty $ when a certain series diverges. In this paper we prove the convergence counterpart of this result when $P$ has bounded discriminant, which leads to a complete solution when $n = 3$ and $\psi (r) = r^{-w}$.
DOI : 10.4064/aa180926-9-5
Keywords: given decreasing positive real function psi mathcal psi set real numbers which there infinitely many integer polynomials degree leq psi operatorname theorem bernik states mathcal psi has hausdorff dimension frac special psi w while theorem beresnevich dickinson velani implies hausdorff measure satisfies mathcal mathcal psi infty certain series diverges paper prove convergence counterpart result has bounded discriminant which leads complete solution psi w

Alessandro Pezzoni 1

1 Department of Mathematics University of York York, YO10 5DD, United Kingdom
@article{10_4064_aa180926_9_5,
     author = {Alessandro Pezzoni},
     title = {A {Jarn{\'\i}k-type} theorem for a problem of approximation by cubic polynomials},
     journal = {Acta Arithmetica},
     pages = {269--281},
     publisher = {mathdoc},
     volume = {193},
     number = {3},
     year = {2020},
     doi = {10.4064/aa180926-9-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa180926-9-5/}
}
TY  - JOUR
AU  - Alessandro Pezzoni
TI  - A Jarník-type theorem for a problem of approximation by cubic polynomials
JO  - Acta Arithmetica
PY  - 2020
SP  - 269
EP  - 281
VL  - 193
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa180926-9-5/
DO  - 10.4064/aa180926-9-5
LA  - en
ID  - 10_4064_aa180926_9_5
ER  - 
%0 Journal Article
%A Alessandro Pezzoni
%T A Jarník-type theorem for a problem of approximation by cubic polynomials
%J Acta Arithmetica
%D 2020
%P 269-281
%V 193
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa180926-9-5/
%R 10.4064/aa180926-9-5
%G en
%F 10_4064_aa180926_9_5
Alessandro Pezzoni. A Jarník-type theorem for a problem of approximation by cubic polynomials. Acta Arithmetica, Tome 193 (2020) no. 3, pp. 269-281. doi : 10.4064/aa180926-9-5. http://geodesic.mathdoc.fr/articles/10.4064/aa180926-9-5/

Cité par Sources :