On the bifurcation set of unique expansions
Acta Arithmetica, Tome 188 (2019) no. 4, pp. 367-399
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Given a positive integer $M$, for $q\in(1, M+1]$ let ${\mathcal{U}}_q$ be the set of $x\in[0, M/(q-1)]$ having a unique $q$-expansion with the digit set $\{0, 1,\ldots, M\}$, and let $\mathbf{U}_q$ be the set of corresponding $q$-expansions. Recently, Komornik et al. (2017) showed that the topological entropy function
$H: q \mapsto h_{\rm top}(\mathbf{U}_q)$ is a devil’s staircase in $(1, M+1]$.
Let $\mathscr{B}$ be the bifurcation set of $H$ defined by
\[
\mathscr{B}=\{q\in(1, M+1]: H(p)\ne H(q)\ \textrm{for any} p\ne q\}.
\]
We analyze the fractal properties of $\mathscr{B}$ and show that for any $q\in \mathscr{B}$,
\[
\lim_{\delta\rightarrow 0} \dim_H(\mathscr{B}\cap(q-\delta, q+\delta))=\dim_H\mathcal{U}_q,
\]
where $\dim_H$ denotes the Hausdorff dimension.
Moreover, when $q\in\mathscr{B}$ the univoque set $\mathcal{U}_q$ is dimensionally homogeneous, i.e.,
$
\dim_H(\mathcal{U}_q\cap V)=\dim_H\mathcal{U}_q
$
for any open set $V$ that intersects $\mathcal{U}_q$.
As an application we obtain a dimensional spectrum result for the set $\mathscr{U}$ containing all bases $q\in(1, M+1]$ such that $1$ admits a unique $q$-expansion. In particular, we prove that for any $t \gt 1$ we have
\[
\dim_H(\mathscr{U}\cap(1, t])=\max_{ q\le t}\dim_H\mathcal{U}_q.
\]
We also consider the variations of the sets $\mathscr{U}=\mathscr{U}(M)$ when $M$ varies.
Keywords:
given positive integer mathcal set q having unique q expansion digit set ldots mathbf set corresponding q expansions recently komornik showed topological entropy function mapsto top mathbf devil staircase mathscr bifurcation set defined mathscr textrm analyze fractal properties mathscr mathscr lim delta rightarrow dim mathscr cap q delta delta dim mathcal where dim denotes hausdorff dimension moreover mathscr univoque set mathcal dimensionally homogeneous dim mathcal cap dim mathcal set intersects mathcal application obtain dimensional spectrum result set mathscr containing bases admits unique q expansion particular prove have dim mathscr cap max dim mathcal consider variations sets mathscr mathscr varies
Affiliations des auteurs :
Charlene Kalle 1 ; Derong Kong 2 ; Wenxia Li 3 ; Fan Lü 4
@article{10_4064_aa171212_11_7,
author = {Charlene Kalle and Derong Kong and Wenxia Li and Fan L\"u},
title = {On the bifurcation set of unique expansions},
journal = {Acta Arithmetica},
pages = {367--399},
year = {2019},
volume = {188},
number = {4},
doi = {10.4064/aa171212-11-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171212-11-7/}
}
TY - JOUR AU - Charlene Kalle AU - Derong Kong AU - Wenxia Li AU - Fan Lü TI - On the bifurcation set of unique expansions JO - Acta Arithmetica PY - 2019 SP - 367 EP - 399 VL - 188 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171212-11-7/ DO - 10.4064/aa171212-11-7 LA - en ID - 10_4064_aa171212_11_7 ER -
Charlene Kalle; Derong Kong; Wenxia Li; Fan Lü. On the bifurcation set of unique expansions. Acta Arithmetica, Tome 188 (2019) no. 4, pp. 367-399. doi: 10.4064/aa171212-11-7
Cité par Sources :