On the bifurcation set of unique expansions
Acta Arithmetica, Tome 188 (2019) no. 4, pp. 367-399.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a positive integer $M$, for $q\in(1, M+1]$ let ${\mathcal{U}}_q$ be the set of $x\in[0, M/(q-1)]$ having a unique $q$-expansion with the digit set $\{0, 1,\ldots, M\}$, and let $\mathbf{U}_q$ be the set of corresponding $q$-expansions. Recently, Komornik et al. (2017) showed that the topological entropy function $H: q \mapsto h_{\rm top}(\mathbf{U}_q)$ is a devil’s staircase in $(1, M+1]$. Let $\mathscr{B}$ be the bifurcation set of $H$ defined by \[ \mathscr{B}=\{q\in(1, M+1]: H(p)\ne H(q)\ \textrm{for any} p\ne q\}. \] We analyze the fractal properties of $\mathscr{B}$ and show that for any $q\in \mathscr{B}$, \[ \lim_{\delta\rightarrow 0} \dim_H(\mathscr{B}\cap(q-\delta, q+\delta))=\dim_H\mathcal{U}_q, \] where $\dim_H$ denotes the Hausdorff dimension. Moreover, when $q\in\mathscr{B}$ the univoque set $\mathcal{U}_q$ is dimensionally homogeneous, i.e., $ \dim_H(\mathcal{U}_q\cap V)=\dim_H\mathcal{U}_q $ for any open set $V$ that intersects $\mathcal{U}_q$. As an application we obtain a dimensional spectrum result for the set $\mathscr{U}$ containing all bases $q\in(1, M+1]$ such that $1$ admits a unique $q$-expansion. In particular, we prove that for any $t \gt 1$ we have \[ \dim_H(\mathscr{U}\cap(1, t])=\max_{ q\le t}\dim_H\mathcal{U}_q. \] We also consider the variations of the sets $\mathscr{U}=\mathscr{U}(M)$ when $M$ varies.
DOI : 10.4064/aa171212-11-7
Keywords: given positive integer mathcal set q having unique q expansion digit set ldots mathbf set corresponding q expansions recently komornik showed topological entropy function mapsto top mathbf devil staircase mathscr bifurcation set defined mathscr textrm analyze fractal properties mathscr mathscr lim delta rightarrow dim mathscr cap q delta delta dim mathcal where dim denotes hausdorff dimension moreover mathscr univoque set mathcal dimensionally homogeneous dim mathcal cap dim mathcal set intersects mathcal application obtain dimensional spectrum result set mathscr containing bases admits unique q expansion particular prove have dim mathscr cap max dim mathcal consider variations sets mathscr mathscr varies

Charlene Kalle 1 ; Derong Kong 2 ; Wenxia Li 3 ; Fan Lü 4

1 Mathematical Institute University of Leiden PO Box 9512 2300 RA Leiden, The Netherlands
2 College of Mathematics and Statistics Chongqing University 401331 Chongqing, China
3 School of Mathematical Sciences Shanghai Key Laboratory of PMMP East China Normal University Shanghai 200062, People’s Republic of China
4 Department of Mathematics Sichuan Normal University Chengdu 610068, People’s Republic of China
@article{10_4064_aa171212_11_7,
     author = {Charlene Kalle and Derong Kong and Wenxia Li and Fan L\"u},
     title = {On the bifurcation set of unique expansions},
     journal = {Acta Arithmetica},
     pages = {367--399},
     publisher = {mathdoc},
     volume = {188},
     number = {4},
     year = {2019},
     doi = {10.4064/aa171212-11-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171212-11-7/}
}
TY  - JOUR
AU  - Charlene Kalle
AU  - Derong Kong
AU  - Wenxia Li
AU  - Fan Lü
TI  - On the bifurcation set of unique expansions
JO  - Acta Arithmetica
PY  - 2019
SP  - 367
EP  - 399
VL  - 188
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171212-11-7/
DO  - 10.4064/aa171212-11-7
LA  - en
ID  - 10_4064_aa171212_11_7
ER  - 
%0 Journal Article
%A Charlene Kalle
%A Derong Kong
%A Wenxia Li
%A Fan Lü
%T On the bifurcation set of unique expansions
%J Acta Arithmetica
%D 2019
%P 367-399
%V 188
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171212-11-7/
%R 10.4064/aa171212-11-7
%G en
%F 10_4064_aa171212_11_7
Charlene Kalle; Derong Kong; Wenxia Li; Fan Lü. On the bifurcation set of unique expansions. Acta Arithmetica, Tome 188 (2019) no. 4, pp. 367-399. doi : 10.4064/aa171212-11-7. http://geodesic.mathdoc.fr/articles/10.4064/aa171212-11-7/

Cité par Sources :