Nilakantha's accelerated series for $\pi $
Acta Arithmetica, Tome 171 (2015) no. 4, pp. 293-308.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show how the idea behind a formula for $\pi $ discovered by the Indian mathematician and astronomer Nilakantha (1445–1545) can be developed into a general series acceleration technique which, when applied to the Gregory–Leibniz series, gives the formula \[\pi = \sum _{n=0}^\infty \frac {(5n+3) n! (2n)!}{2^{n-1} (3n+2)!}\] with convergence as $13.5^{-n}$, in much the same way as the Euler transformation gives \[ \pi = \sum _{n=0}^\infty \frac {2^{n+1} n! n!}{(2n+1)!} \] with convergence as $2^{-n}$. Similar transformations lead to other accelerated series for $\pi $, including three ‶BBP-like″ formulas, all of which are collected in the Appendix. Optimal convergence is achieved using Chebyshev polynomials.
DOI : 10.4064/aa171-4-1
Keywords: idea behind formula discovered indian mathematician astronomer nilakantha developed general series acceleration technique which applied gregory leibniz series gives formula sum infty frac n convergence n much euler transformation gives sum infty frac convergence n similar transformations lead other accelerated series nbsp including three bbp like formulas which collected appendix optimal convergence achieved using chebyshev polynomials

David Brink 1

1 Akamai Technologies Larslejsstræde 6 1451 København K, Denmark
@article{10_4064_aa171_4_1,
     author = {David Brink},
     title = {Nilakantha's accelerated series for $\pi $},
     journal = {Acta Arithmetica},
     pages = {293--308},
     publisher = {mathdoc},
     volume = {171},
     number = {4},
     year = {2015},
     doi = {10.4064/aa171-4-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-4-1/}
}
TY  - JOUR
AU  - David Brink
TI  - Nilakantha's accelerated series for $\pi $
JO  - Acta Arithmetica
PY  - 2015
SP  - 293
EP  - 308
VL  - 171
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171-4-1/
DO  - 10.4064/aa171-4-1
LA  - en
ID  - 10_4064_aa171_4_1
ER  - 
%0 Journal Article
%A David Brink
%T Nilakantha's accelerated series for $\pi $
%J Acta Arithmetica
%D 2015
%P 293-308
%V 171
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171-4-1/
%R 10.4064/aa171-4-1
%G en
%F 10_4064_aa171_4_1
David Brink. Nilakantha's accelerated series for $\pi $. Acta Arithmetica, Tome 171 (2015) no. 4, pp. 293-308. doi : 10.4064/aa171-4-1. http://geodesic.mathdoc.fr/articles/10.4064/aa171-4-1/

Cité par Sources :