Heights and totally $p$-adic numbers
Acta Arithmetica, Tome 171 (2015) no. 3, pp. 277-291.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the behavior of canonical height functions $\widehat{h}_f$, associated to rational maps $f$, on totally $p$-adic fields. In particular, we prove that there is a gap between zero and the next smallest value of $\widehat{h}_f$ on the maximal totally $p$-adic field if the map $f$ has at least one periodic point not contained in this field. As an application we prove that there is no infinite subset $X$ in the compositum of all number fields of degree at most $d$ such that $f(X)=X$ for some non-linear polynomial $f$. This answers a question of W. Narkiewicz from 1963.
DOI : 10.4064/aa171-3-5
Keywords: study behavior canonical height functions widehat associated rational maps totally p adic fields particular prove there gap between zero smallest value widehat maximal totally p adic field map has least periodic point contained field application prove there infinite subset compositum number fields degree non linear polynomial nbsp answers question nbsp narkiewicz

Lukas Pottmeyer 1

1 Fachbereich Mathematik Universit\"at Basel Spiegelgasse 1 4051 Basel, Switzerland
@article{10_4064_aa171_3_5,
     author = {Lukas Pottmeyer},
     title = {Heights and totally $p$-adic numbers},
     journal = {Acta Arithmetica},
     pages = {277--291},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2015},
     doi = {10.4064/aa171-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-5/}
}
TY  - JOUR
AU  - Lukas Pottmeyer
TI  - Heights and totally $p$-adic numbers
JO  - Acta Arithmetica
PY  - 2015
SP  - 277
EP  - 291
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-5/
DO  - 10.4064/aa171-3-5
LA  - en
ID  - 10_4064_aa171_3_5
ER  - 
%0 Journal Article
%A Lukas Pottmeyer
%T Heights and totally $p$-adic numbers
%J Acta Arithmetica
%D 2015
%P 277-291
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-5/
%R 10.4064/aa171-3-5
%G en
%F 10_4064_aa171_3_5
Lukas Pottmeyer. Heights and totally $p$-adic numbers. Acta Arithmetica, Tome 171 (2015) no. 3, pp. 277-291. doi : 10.4064/aa171-3-5. http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-5/

Cité par Sources :