Solutions to $xyz = 1$ and $x + y + z = k$ in algebraic integers of small degree, II
Acta Arithmetica, Tome 171 (2015) no. 3, pp. 257-276.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $k\in {\mathbb Z}$ be such that $|\mathcal E_k({\mathbb Q})|$ is finite, where $\mathcal E_k:\ y^2 = 1 - 2 k x + k^2 x^2 -4 x^3$. We complete the determination of all solutions to $xyz = 1$ and $x + y + z = k$ in integers of number fields of degree at most four over ${\mathbb Q}$.
DOI : 10.4064/aa171-3-4
Keywords: mathbb mathcal mathbb finite where mathcal complete determination solutions xyz integers number fields degree mathbb

H. G. Grundman 1 ; L. L. Hall-Seelig 2

1 Department of Mathematics Bryn Mawr College Bryn Mawr, PA 19010, U.S.A.
2 Department of Mathematics Merrimack College North Andover, MA 01845, U.S.A.
@article{10_4064_aa171_3_4,
     author = {H. G. Grundman and L. L. Hall-Seelig},
     title = {Solutions to $xyz = 1$ and $x + y + z = k$ in algebraic integers of small degree, {II}},
     journal = {Acta Arithmetica},
     pages = {257--276},
     publisher = {mathdoc},
     volume = {171},
     number = {3},
     year = {2015},
     doi = {10.4064/aa171-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-4/}
}
TY  - JOUR
AU  - H. G. Grundman
AU  - L. L. Hall-Seelig
TI  - Solutions to $xyz = 1$ and $x + y + z = k$ in algebraic integers of small degree, II
JO  - Acta Arithmetica
PY  - 2015
SP  - 257
EP  - 276
VL  - 171
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-4/
DO  - 10.4064/aa171-3-4
LA  - en
ID  - 10_4064_aa171_3_4
ER  - 
%0 Journal Article
%A H. G. Grundman
%A L. L. Hall-Seelig
%T Solutions to $xyz = 1$ and $x + y + z = k$ in algebraic integers of small degree, II
%J Acta Arithmetica
%D 2015
%P 257-276
%V 171
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-4/
%R 10.4064/aa171-3-4
%G en
%F 10_4064_aa171_3_4
H. G. Grundman; L. L. Hall-Seelig. Solutions to $xyz = 1$ and $x + y + z = k$ in algebraic integers of small degree, II. Acta Arithmetica, Tome 171 (2015) no. 3, pp. 257-276. doi : 10.4064/aa171-3-4. http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-4/

Cité par Sources :