A structure theorem for sets of small popular doubling
Acta Arithmetica, Tome 171 (2015) no. 3, pp. 221-239
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every set $A\subset\mathbb{Z}$ satisfying
$\sum_{x}\min(1_A*1_A(x),t)\le (2+\delta)t|A|$ for $t$ and $\delta$ in suitable
ranges must be very close to an arithmetic progression. We use this result to improve the estimates of Green and Morris for the probability that a random subset $A\subset\mathbb{N}$ satisfies $|\mathbb{N}\setminus(A+A)|\ge k$; specifically, we show that $\mathbb{P}(|\mathbb{N}\setminus(A+A)|\ge k)=\varTheta(2^{-k/2})$.
Keywords:
prove every set subset mathbb satisfying sum min a* delta delta suitable ranges close arithmetic progression result improve estimates green morris probability random subset subset mathbb satisfies mathbb setminus specifically mathbb mathbb setminus vartheta k
Affiliations des auteurs :
Przemysław Mazur 1
@article{10_4064_aa171_3_2,
author = {Przemys{\l}aw Mazur},
title = {A structure theorem for sets of small popular doubling},
journal = {Acta Arithmetica},
pages = {221--239},
publisher = {mathdoc},
volume = {171},
number = {3},
year = {2015},
doi = {10.4064/aa171-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-3-2/}
}
Przemysław Mazur. A structure theorem for sets of small popular doubling. Acta Arithmetica, Tome 171 (2015) no. 3, pp. 221-239. doi: 10.4064/aa171-3-2
Cité par Sources :