A note on ternary purely exponential diophantine equations
Acta Arithmetica, Tome 171 (2015) no. 2, pp. 173-182
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $a,b,c$ be fixed coprime positive integers with $\min\{a,b,c\}>1$, and let $m=\max \{a,b,c\}$. Using the Gel'fond–Baker method, we prove that all positive integer solutions $(x,y,z)$ of the equation $a^x+b^y=c^z$ satisfy $\max \{x,y,z\}155000(\log m)^3$. Moreover, using that result, we prove that if $a,b,c$ satisfy certain divisibility conditions and $m$ is large enough, then the equation has at most one solution $(x,y,z)$ with $\min\{x,y,z\}>1$.
Keywords:
fixed coprime positive integers min max using gelfond baker method prove positive integer solutions equation y satisfy max log moreover using result prove satisfy certain divisibility conditions large enough equation has solution min
Affiliations des auteurs :
Yongzhong Hu 1 ; Maohua Le 2
@article{10_4064_aa171_2_4,
author = {Yongzhong Hu and Maohua Le},
title = {A note on ternary purely exponential diophantine equations},
journal = {Acta Arithmetica},
pages = {173--182},
publisher = {mathdoc},
volume = {171},
number = {2},
year = {2015},
doi = {10.4064/aa171-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-4/}
}
TY - JOUR AU - Yongzhong Hu AU - Maohua Le TI - A note on ternary purely exponential diophantine equations JO - Acta Arithmetica PY - 2015 SP - 173 EP - 182 VL - 171 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-4/ DO - 10.4064/aa171-2-4 LA - en ID - 10_4064_aa171_2_4 ER -
Yongzhong Hu; Maohua Le. A note on ternary purely exponential diophantine equations. Acta Arithmetica, Tome 171 (2015) no. 2, pp. 173-182. doi: 10.4064/aa171-2-4
Cité par Sources :