Chebotarev sets
Acta Arithmetica, Tome 171 (2015) no. 2, pp. 97-124.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the problem of determining whether a set of primes, or, more generally, prime ideals in a number field, can be realized as a finite union of residue classes, or of Frobenius conjugacy classes. We give necessary conditions for a set to be realized in this manner, and show that the subset of primes consisting of every other prime cannot be expressed in this way, even if we allow a finite number of exceptions.
DOI : 10.4064/aa171-2-1
Keywords: consider problem determining whether set primes generally prime ideals number field realized finite union residue classes frobenius conjugacy classes necessary conditions set realized manner subset primes consisting every other prime cannot expressed even allow finite number exceptions

Hershy Kisilevsky 1 ; Michael O. Rubinstein 2

1 Department of Mathematics and Statistics Concordia University J.W. McConnell Building 1400 De Maisonneuve W. Montreal, Quebec, Canada, H3G 1M8
2 Pure Mathematics University of Waterloo 200 University Ave. W Waterloo, Ontario, Canada, N2L 3G1
@article{10_4064_aa171_2_1,
     author = {Hershy Kisilevsky and Michael O. Rubinstein},
     title = {Chebotarev sets},
     journal = {Acta Arithmetica},
     pages = {97--124},
     publisher = {mathdoc},
     volume = {171},
     number = {2},
     year = {2015},
     doi = {10.4064/aa171-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-1/}
}
TY  - JOUR
AU  - Hershy Kisilevsky
AU  - Michael O. Rubinstein
TI  - Chebotarev sets
JO  - Acta Arithmetica
PY  - 2015
SP  - 97
EP  - 124
VL  - 171
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-1/
DO  - 10.4064/aa171-2-1
LA  - en
ID  - 10_4064_aa171_2_1
ER  - 
%0 Journal Article
%A Hershy Kisilevsky
%A Michael O. Rubinstein
%T Chebotarev sets
%J Acta Arithmetica
%D 2015
%P 97-124
%V 171
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-1/
%R 10.4064/aa171-2-1
%G en
%F 10_4064_aa171_2_1
Hershy Kisilevsky; Michael O. Rubinstein. Chebotarev sets. Acta Arithmetica, Tome 171 (2015) no. 2, pp. 97-124. doi : 10.4064/aa171-2-1. http://geodesic.mathdoc.fr/articles/10.4064/aa171-2-1/

Cité par Sources :