The largest prime factor of $X^3+2$
Acta Arithmetica, Tome 171 (2015) no. 1, pp. 67-80.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Improving on a theorem of Heath-Brown, we show that if $X$ is sufficiently large then a positive proportion of the values $\{n^3+2:n\in (X,2X]\}$ have a prime factor larger than $X^{1+10^{-52}}$.
DOI : 10.4064/aa171-1-5
Keywords: improving theorem heath brown sufficiently large positive proportion values have prime factor larger

A. J. Irving 1

1 Centre de recherches math\'ematiques Universit\'ede Montr\'eal Pavillon Andr\'e-Aisenstadt 2920 Chemin de la tour, room 5357 Montr\'eal (Qu\'ebec) H3T 1J4, Canada
@article{10_4064_aa171_1_5,
     author = {A. J. Irving},
     title = {The largest prime factor of $X^3+2$},
     journal = {Acta Arithmetica},
     pages = {67--80},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2015},
     doi = {10.4064/aa171-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-5/}
}
TY  - JOUR
AU  - A. J. Irving
TI  - The largest prime factor of $X^3+2$
JO  - Acta Arithmetica
PY  - 2015
SP  - 67
EP  - 80
VL  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-5/
DO  - 10.4064/aa171-1-5
LA  - en
ID  - 10_4064_aa171_1_5
ER  - 
%0 Journal Article
%A A. J. Irving
%T The largest prime factor of $X^3+2$
%J Acta Arithmetica
%D 2015
%P 67-80
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-5/
%R 10.4064/aa171-1-5
%G en
%F 10_4064_aa171_1_5
A. J. Irving. The largest prime factor of $X^3+2$. Acta Arithmetica, Tome 171 (2015) no. 1, pp. 67-80. doi : 10.4064/aa171-1-5. http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-5/

Cité par Sources :