The largest prime factor of $X^3+2$
Acta Arithmetica, Tome 171 (2015) no. 1, pp. 67-80
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Improving on a theorem of Heath-Brown, we show that if $X$ is sufficiently large then a positive proportion of the values $\{n^3+2:n\in (X,2X]\}$ have a prime factor larger than $X^{1+10^{-52}}$.
Keywords:
improving theorem heath brown sufficiently large positive proportion values have prime factor larger
Affiliations des auteurs :
A. J. Irving 1
@article{10_4064_aa171_1_5,
author = {A. J. Irving},
title = {The largest prime factor of $X^3+2$},
journal = {Acta Arithmetica},
pages = {67--80},
publisher = {mathdoc},
volume = {171},
number = {1},
year = {2015},
doi = {10.4064/aa171-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-5/}
}
A. J. Irving. The largest prime factor of $X^3+2$. Acta Arithmetica, Tome 171 (2015) no. 1, pp. 67-80. doi: 10.4064/aa171-1-5
Cité par Sources :