The Dirichlet–Bohr radius
Acta Arithmetica, Tome 171 (2015) no. 1, pp. 23-37
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Denote by $\varOmega(n)$ the number of prime divisors of $n \in \mathbb{N}$
(counted with multiplicities).
For $x\in \mathbb{N}$ define the Dirichlet–Bohr radius $L(x)$ to be the best
$r>0$ such that for every finite Dirichlet polynomial $\sum_{n \leq x} a_n n^{-s}$ we have
$$
\sum_{n \leq x} |a_n| r^{\varOmega(n)} \leq \sup_{t\in \mathbb{R}}\, \Bigl|\sum_{n \leq x} a_n n^{-it}\Bigr|.
$$
We prove that the asymptotically correct order of $L(x)$ is $ (\log x)^{1/4}x^{-1/8} $.
Following Bohr's vision our proof links the estimation of $L(x)$ with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows
translating various results on Bohr radii in a systematic way into results on Dirichlet–Bohr radii, and vice versa.
Mots-clés :
denote varomega number prime divisors mathbb counted multiplicities mathbb define dirichlet bohr radius best every finite dirichlet polynomial sum leq s have sum leq varomega leq sup mathbb bigl sum leq it bigr prove asymptotically correct order log following bohrs vision proof links estimation classical bohr radii holomorphic functions several variables moreover suggest general setting which allows translating various results bohr radii systematic results dirichlet bohr radii vice versa
Affiliations des auteurs :
Daniel Carando 1 ; Andreas Defant 2 ; Domingo a Garcí 3 ; Manuel Maestre 4 ; Pablo Sevilla-Peris 5
@article{10_4064_aa171_1_3,
author = {Daniel Carando and Andreas Defant and Domingo a Garc{\'\i} and Manuel Maestre and Pablo Sevilla-Peris},
title = {The {Dirichlet{\textendash}Bohr} radius},
journal = {Acta Arithmetica},
pages = {23--37},
publisher = {mathdoc},
volume = {171},
number = {1},
year = {2015},
doi = {10.4064/aa171-1-3},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-3/}
}
TY - JOUR AU - Daniel Carando AU - Andreas Defant AU - Domingo a Garcí AU - Manuel Maestre AU - Pablo Sevilla-Peris TI - The Dirichlet–Bohr radius JO - Acta Arithmetica PY - 2015 SP - 23 EP - 37 VL - 171 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-3/ DO - 10.4064/aa171-1-3 LA - de ID - 10_4064_aa171_1_3 ER -
%0 Journal Article %A Daniel Carando %A Andreas Defant %A Domingo a Garcí %A Manuel Maestre %A Pablo Sevilla-Peris %T The Dirichlet–Bohr radius %J Acta Arithmetica %D 2015 %P 23-37 %V 171 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-3/ %R 10.4064/aa171-1-3 %G de %F 10_4064_aa171_1_3
Daniel Carando; Andreas Defant; Domingo a Garcí; Manuel Maestre; Pablo Sevilla-Peris. The Dirichlet–Bohr radius. Acta Arithmetica, Tome 171 (2015) no. 1, pp. 23-37. doi: 10.4064/aa171-1-3
Cité par Sources :