The Dirichlet–Bohr radius
Acta Arithmetica, Tome 171 (2015) no. 1, pp. 23-37.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Denote by $\varOmega(n)$ the number of prime divisors of $n \in \mathbb{N}$ (counted with multiplicities). For $x\in \mathbb{N}$ define the Dirichlet–Bohr radius $L(x)$ to be the best $r>0$ such that for every finite Dirichlet polynomial $\sum_{n \leq x} a_n n^{-s}$ we have $$ \sum_{n \leq x} |a_n| r^{\varOmega(n)} \leq \sup_{t\in \mathbb{R}}\, \Bigl|\sum_{n \leq x} a_n n^{-it}\Bigr|. $$ We prove that the asymptotically correct order of $L(x)$ is $ (\log x)^{1/4}x^{-1/8} $. Following Bohr's vision our proof links the estimation of $L(x)$ with classical Bohr radii for holomorphic functions in several variables. Moreover, we suggest a general setting which allows translating various results on Bohr radii in a systematic way into results on Dirichlet–Bohr radii, and vice versa.
DOI : 10.4064/aa171-1-3
Mots-clés : denote varomega number prime divisors mathbb counted multiplicities mathbb define dirichlet bohr radius best every finite dirichlet polynomial sum leq s have sum leq varomega leq sup mathbb bigl sum leq it bigr prove asymptotically correct order log following bohrs vision proof links estimation classical bohr radii holomorphic functions several variables moreover suggest general setting which allows translating various results bohr radii systematic results dirichlet bohr radii vice versa

Daniel Carando 1 ; Andreas Defant 2 ; Domingo a Garcí 3 ; Manuel Maestre 4 ; Pablo Sevilla-Peris 5

1 Departamento de Matem\'atica Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pab I, Ciudad Universitaria 1428, Buenos Aires, Argentina and IMAS – CONICET
2 Institut für Mathematik Universität Oldenburg D-26111 Oldenburg, Germany
3 Departamento de Análisis Matemático Universidad de Valencia Doctor Moliner 50 46100 Burjasot (Valencia), Spain
4 Departamento de Análisis Matemáatico Universidad de Valencia Doctor Moliner 50 46100 Burjasot (Valencia), Spain
5 Instituto Universitario de Matemática Pura y Aplicada Universitat Politécnica de Valéncia Valencia, Spain
@article{10_4064_aa171_1_3,
     author = {Daniel Carando and Andreas Defant and Domingo a Garc{\'\i} and Manuel Maestre and Pablo Sevilla-Peris},
     title = {The {Dirichlet{\textendash}Bohr} radius},
     journal = {Acta Arithmetica},
     pages = {23--37},
     publisher = {mathdoc},
     volume = {171},
     number = {1},
     year = {2015},
     doi = {10.4064/aa171-1-3},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-3/}
}
TY  - JOUR
AU  - Daniel Carando
AU  - Andreas Defant
AU  - Domingo a Garcí
AU  - Manuel Maestre
AU  - Pablo Sevilla-Peris
TI  - The Dirichlet–Bohr radius
JO  - Acta Arithmetica
PY  - 2015
SP  - 23
EP  - 37
VL  - 171
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-3/
DO  - 10.4064/aa171-1-3
LA  - de
ID  - 10_4064_aa171_1_3
ER  - 
%0 Journal Article
%A Daniel Carando
%A Andreas Defant
%A Domingo a Garcí
%A Manuel Maestre
%A Pablo Sevilla-Peris
%T The Dirichlet–Bohr radius
%J Acta Arithmetica
%D 2015
%P 23-37
%V 171
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-3/
%R 10.4064/aa171-1-3
%G de
%F 10_4064_aa171_1_3
Daniel Carando; Andreas Defant; Domingo a Garcí; Manuel Maestre; Pablo Sevilla-Peris. The Dirichlet–Bohr radius. Acta Arithmetica, Tome 171 (2015) no. 1, pp. 23-37. doi : 10.4064/aa171-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa171-1-3/

Cité par Sources :