Localized quantitative criteria for equidistribution
Acta Arithmetica, Tome 180 (2017) no. 2, pp. 183-199
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $(x_n)_{n=1}^{\infty}$ be a sequence on the torus $\mathbb{T}$
(normalized to length 1). We show that if
there exists a sequence $(t_n)_{n=1}^{\infty}$ of positive real numbers converging to 0 such that $$ \lim_{N \rightarrow \infty}{ \frac{1}{N^2} \sum_{m,n = 1}^{N}{ \frac{1}{\sqrt{t_N}}
\exp\biggl(- \frac{1}{t_N} (x_m - x_n)^2 \biggr)} } = \sqrt{\pi},
$$
then $(x_n)_{n=1}^{\infty}$ is uniformly distributed. This is especially interesting when $t_N \sim N^{-2}$ since the size of the sum is then essentially
determined by local gaps at scale $\sim N^{-1}$. This can be used to show equidistribution of sequences
with Poissonian pair correlation, which recovers a recent result of Aistleitner, Lachmann Pausinger and Grepstad Larcher. The general
form of the result is proven on arbitrary compact manifolds $(M,g)$ where the role of the exponential function is played by
the heat kernel $e^{t\varDelta}$: for all $x_1, \dots, x_N \in M$ and all $t \gt 0$
we have
$$
\frac{1}{N^2}\sum_{m,n=1}^{N}{[e^{t\varDelta}\delta_{x_m}](x_n)} \geq \frac{1}{\mvol(M)},
$$
and equality is attained as $N \rightarrow \infty$ if and only if $(x_n)_{n=1}^{\infty}$ equidistributes.
Keywords:
infty sequence torus mathbb normalized length nbsp there exists sequence infty positive real numbers converging lim rightarrow infty frac sum frac sqrt exp biggl frac biggr sqrt infty uniformly distributed especially interesting sim since size sum essentially determined local gaps scale sim equidistribution sequences poissonian pair correlation which recovers recent result aistleitner lachmann pausinger grepstad larcher general form result proven arbitrary compact manifolds where role exponential function played heat kernel vardelta dots have frac sum vardelta delta geq frac mvol equality attained rightarrow infty only infty equidistributes
Affiliations des auteurs :
Stefan Steinerberger 1
@article{10_4064_aa170410_22_5,
author = {Stefan Steinerberger},
title = {Localized quantitative criteria for equidistribution},
journal = {Acta Arithmetica},
pages = {183--199},
publisher = {mathdoc},
volume = {180},
number = {2},
year = {2017},
doi = {10.4064/aa170410-22-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170410-22-5/}
}
TY - JOUR AU - Stefan Steinerberger TI - Localized quantitative criteria for equidistribution JO - Acta Arithmetica PY - 2017 SP - 183 EP - 199 VL - 180 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa170410-22-5/ DO - 10.4064/aa170410-22-5 LA - en ID - 10_4064_aa170410_22_5 ER -
Stefan Steinerberger. Localized quantitative criteria for equidistribution. Acta Arithmetica, Tome 180 (2017) no. 2, pp. 183-199. doi: 10.4064/aa170410-22-5
Cité par Sources :