A problem of Rankin on sets without geometric progressions
Acta Arithmetica, Tome 170 (2015) no. 4, pp. 327-342.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A geometric progression of length $k$ and integer ratio is a set of numbers of the form $\{a,ar,\dots,ar^{k-1}\}$ for some positive real number $a$ and integer $r\geq 2$. For each integer $k \geq 3$, a greedy algorithm is used to construct a strictly decreasing sequence $(a_i)_{i=1}^{\infty}$ of positive real numbers with $a_1 = 1$ such that the set $$G^{(k)} = \bigcup_{i=1}^{\infty} (a_{2i} , a_{2i-1} ]$$ contains no geometric progression of length $k$ and integer ratio. Moreover, $G^{(k)}$ is a maximal subset of $(0,1]$ that contains no geometric progression of length $k$ and integer ratio. It is also proved that there is a strictly increasing sequence $(A_i)_{i=1}^{\infty}$ of positive integers with $A_1 = 1$ such that $a_i = 1/A_i$ for all $i = 1,2,\ldots.$The set $G^{(k)}$ gives a new lower bound for the maximum cardinality of a subset of $\{1,\dots,n\}$ that contains no geometric progression of length $k$ and integer ratio.
DOI : 10.4064/aa170-4-2
Keywords: geometric progression length integer ratio set numbers form dots k positive real number integer geq each integer geq greedy algorithm construct strictly decreasing sequence infty positive real numbers set bigcup infty i contains geometric progression length integer ratio moreover maximal subset contains geometric progression length integer ratio proved there strictly increasing sequence infty positive integers ldots set gives lower bound maximum cardinality subset dots contains geometric progression length integer ratio

Melvyn B. Nathanson 1 ; Kevin O'Bryant 2

1 Department of Mathematics Lehman College (CUNY) Bronx, NY 10468, U.S.A.
2 Department of Mathematics College of Staten Island (CUNY) Staten Island, NY 10314, U.S.A.
@article{10_4064_aa170_4_2,
     author = {Melvyn B. Nathanson and Kevin O'Bryant},
     title = {A problem of {Rankin} on sets without geometric progressions},
     journal = {Acta Arithmetica},
     pages = {327--342},
     publisher = {mathdoc},
     volume = {170},
     number = {4},
     year = {2015},
     doi = {10.4064/aa170-4-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-4-2/}
}
TY  - JOUR
AU  - Melvyn B. Nathanson
AU  - Kevin O'Bryant
TI  - A problem of Rankin on sets without geometric progressions
JO  - Acta Arithmetica
PY  - 2015
SP  - 327
EP  - 342
VL  - 170
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa170-4-2/
DO  - 10.4064/aa170-4-2
LA  - en
ID  - 10_4064_aa170_4_2
ER  - 
%0 Journal Article
%A Melvyn B. Nathanson
%A Kevin O'Bryant
%T A problem of Rankin on sets without geometric progressions
%J Acta Arithmetica
%D 2015
%P 327-342
%V 170
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa170-4-2/
%R 10.4064/aa170-4-2
%G en
%F 10_4064_aa170_4_2
Melvyn B. Nathanson; Kevin O'Bryant. A problem of Rankin on sets without geometric progressions. Acta Arithmetica, Tome 170 (2015) no. 4, pp. 327-342. doi : 10.4064/aa170-4-2. http://geodesic.mathdoc.fr/articles/10.4064/aa170-4-2/

Cité par Sources :