A problem of Rankin on sets without geometric progressions
Acta Arithmetica, Tome 170 (2015) no. 4, pp. 327-342
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A geometric progression of length $k$ and integer ratio is a set
of numbers of the form $\{a,ar,\dots,ar^{k-1}\}$
for some positive real number $a$ and integer $r\geq 2$.
For each integer $k \geq 3$, a greedy algorithm is used to construct
a strictly decreasing sequence
$(a_i)_{i=1}^{\infty}$ of positive real numbers with $a_1 = 1$ such that the set
$$G^{(k)} = \bigcup_{i=1}^{\infty} (a_{2i} , a_{2i-1} ]$$
contains no geometric progression of length $k$ and integer ratio.
Moreover, $G^{(k)}$ is a maximal subset of $(0,1]$ that
contains no geometric progression of length $k$ and integer ratio.
It is also proved that there is a strictly increasing sequence
$(A_i)_{i=1}^{\infty}$ of positive integers with $A_1 = 1$
such that $a_i = 1/A_i$ for all $i = 1,2,\ldots.$The set $G^{(k)}$ gives a new lower bound for the maximum cardinality of a subset
of $\{1,\dots,n\}$ that contains no geometric progression of length $k$ and integer ratio.
Keywords:
geometric progression length integer ratio set numbers form dots k positive real number integer geq each integer geq greedy algorithm construct strictly decreasing sequence infty positive real numbers set bigcup infty i contains geometric progression length integer ratio moreover maximal subset contains geometric progression length integer ratio proved there strictly increasing sequence infty positive integers ldots set gives lower bound maximum cardinality subset dots contains geometric progression length integer ratio
Affiliations des auteurs :
Melvyn B. Nathanson 1 ; Kevin O'Bryant 2
@article{10_4064_aa170_4_2,
author = {Melvyn B. Nathanson and Kevin O'Bryant},
title = {A problem of {Rankin} on sets without geometric progressions},
journal = {Acta Arithmetica},
pages = {327--342},
publisher = {mathdoc},
volume = {170},
number = {4},
year = {2015},
doi = {10.4064/aa170-4-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-4-2/}
}
TY - JOUR AU - Melvyn B. Nathanson AU - Kevin O'Bryant TI - A problem of Rankin on sets without geometric progressions JO - Acta Arithmetica PY - 2015 SP - 327 EP - 342 VL - 170 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa170-4-2/ DO - 10.4064/aa170-4-2 LA - en ID - 10_4064_aa170_4_2 ER -
Melvyn B. Nathanson; Kevin O'Bryant. A problem of Rankin on sets without geometric progressions. Acta Arithmetica, Tome 170 (2015) no. 4, pp. 327-342. doi: 10.4064/aa170-4-2
Cité par Sources :