$3x+1$ inverse orbit generating functions
almost always have natural boundaries
Acta Arithmetica, Tome 170 (2015) no. 2, pp. 101-120
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The $3x+k$ function $T_{k}(n)$ sends $n$ to $(3n+k)/2$, resp. $n/2,$
according as $n$ is odd, resp. even, where $k \equiv \pm 1\, ({\rm mod}\, 6)$.
The map $T_k(\cdot)$ sends integers to integers; for $m \ge 1$
let $n \rightarrow m$
mean that $m$ is in the forward orbit of $n$ under iteration of $T_k(\cdot).$
We consider the generating functions $f_{k,m}(z) = \sum_{n>0,\, n \rightarrow m} z^{n},$
which are holomorphic in the unit disk.
We give sufficient conditions on $(k,m)$ for the functions $f_{k, m}(z)$
to have the unit circle $\{|z|=1\}$ as a natural boundary
to analytic continuation.
For the $3x+1$ function these conditions hold for all $m \ge 1$ to show
that $f_{1,m}(z)$ has the unit circle as a natural boundary
except possibly for $m= 1, 2, 4$ and $8$. The $3x+1$ Conjecture is equivalent to the assertion
that $f_{1, m}(z)$ is a rational function of $z$ for the remaining values $m=1,2, 4, 8$.
Keywords:
function sends resp according odd resp even where equiv mod map cdot sends integers integers rightarrow mean forward orbit under iteration cdot consider generating functions sum rightarrow which holomorphic unit disk sufficient conditions functions have unit circle natural boundary analytic continuation function these conditions has unit circle natural boundary except possibly conjecture equivalent assertion rational function remaining values
Affiliations des auteurs :
Jason P. Bell 1 ; Jeffrey C. Lagarias 2
@article{10_4064_aa170_2_1,
author = {Jason P. Bell and Jeffrey C. Lagarias},
title = {$3x+1$ inverse orbit generating functions
almost always have natural boundaries},
journal = {Acta Arithmetica},
pages = {101--120},
year = {2015},
volume = {170},
number = {2},
doi = {10.4064/aa170-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-2-1/}
}
TY - JOUR AU - Jason P. Bell AU - Jeffrey C. Lagarias TI - $3x+1$ inverse orbit generating functions almost always have natural boundaries JO - Acta Arithmetica PY - 2015 SP - 101 EP - 120 VL - 170 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa170-2-1/ DO - 10.4064/aa170-2-1 LA - en ID - 10_4064_aa170_2_1 ER -
Jason P. Bell; Jeffrey C. Lagarias. $3x+1$ inverse orbit generating functions almost always have natural boundaries. Acta Arithmetica, Tome 170 (2015) no. 2, pp. 101-120. doi: 10.4064/aa170-2-1
Cité par Sources :