Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Jason P. Bell 1 ; Jeffrey C. Lagarias 2
@article{10_4064_aa170_2_1, author = {Jason P. Bell and Jeffrey C. Lagarias}, title = {$3x+1$ inverse orbit generating functions almost always have natural boundaries}, journal = {Acta Arithmetica}, pages = {101--120}, publisher = {mathdoc}, volume = {170}, number = {2}, year = {2015}, doi = {10.4064/aa170-2-1}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-2-1/} }
TY - JOUR AU - Jason P. Bell AU - Jeffrey C. Lagarias TI - $3x+1$ inverse orbit generating functions almost always have natural boundaries JO - Acta Arithmetica PY - 2015 SP - 101 EP - 120 VL - 170 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa170-2-1/ DO - 10.4064/aa170-2-1 LA - en ID - 10_4064_aa170_2_1 ER -
%0 Journal Article %A Jason P. Bell %A Jeffrey C. Lagarias %T $3x+1$ inverse orbit generating functions almost always have natural boundaries %J Acta Arithmetica %D 2015 %P 101-120 %V 170 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/aa170-2-1/ %R 10.4064/aa170-2-1 %G en %F 10_4064_aa170_2_1
Jason P. Bell; Jeffrey C. Lagarias. $3x+1$ inverse orbit generating functions almost always have natural boundaries. Acta Arithmetica, Tome 170 (2015) no. 2, pp. 101-120. doi : 10.4064/aa170-2-1. http://geodesic.mathdoc.fr/articles/10.4064/aa170-2-1/
Cité par Sources :