Equality of Dedekind sums modulo $8 \mathbb {Z}$
Acta Arithmetica, Tome 170 (2015) no. 1, pp. 67-72
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Using a generalization due to Lerch [Bull. Int. Acad. François Joseph 3 (1896)] of a classical lemma of Zolotarev, employed in Zolotarev's proof of the law of quadratic reciprocity, we determine necessary and sufficient conditions for the difference of two Dedekind sums to be in $8\mathbb {Z}$. These yield new necessary conditions for equality of two Dedekind sums. In addition, we resolve a conjecture of Girstmair [arXiv:1501.00655].
Keywords:
using generalization due lerch bull int acad fran ois joseph classical lemma zolotarev employed zolotarevs proof law quadratic reciprocity determine necessary sufficient conditions difference dedekind sums mathbb these yield necessary conditions equality dedekind sums addition resolve conjecture girstmair arxiv
Affiliations des auteurs :
Emmanuel Tsukerman 1
@article{10_4064_aa170_1_5,
author = {Emmanuel Tsukerman},
title = {Equality of {Dedekind} sums modulo $8 \mathbb {Z}$},
journal = {Acta Arithmetica},
pages = {67--72},
publisher = {mathdoc},
volume = {170},
number = {1},
year = {2015},
doi = {10.4064/aa170-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa170-1-5/}
}
Emmanuel Tsukerman. Equality of Dedekind sums modulo $8 \mathbb {Z}$. Acta Arithmetica, Tome 170 (2015) no. 1, pp. 67-72. doi: 10.4064/aa170-1-5
Cité par Sources :