On a conjecture of Lemke and Kleitman
Acta Arithmetica, Tome 168 (2015) no. 3, pp. 289-299.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $G$ be a finite cyclic group of order $n\ge 2$. Every sequence $S$ over $G$ can be written in the form $S = (n_1g)\cdot \ldots \cdot (n_lg)$ where $g \in G$ and $n_1, \ldots , n_l \in [1, \mathop{\rm ord} (g)]$, and the index $\mathop{\rm ind} (S)$ of $S$ is defined as the minimum of $(n_1 +\cdots + n_l )/ \mathop{\rm ord} (g)$ over all $g\in G$ with $\mathop{\rm ord} (g) = n$. In this paper it is shown that any sequence $S$ over $G$ of length $|S| \ge n \ge 5$, $2 \nmid n$, having an element with multiplicity at least ${n/3}$ has a subsequence $T$ with $\mathop{\rm ind} (T ) = 1$. On the other hand, if $n, d\ge 2$ are positive integers with $d\,|\,n$ and $n>d^2(d^3-d^2+d+1)$, we provide an example of a sequence $S$ of length $|S| \ge n$ having an element with multiplicity $l={n/d}-d(d-1)-1$ such that $S$ has no subsequence $T$ with $\mathop{\rm ind} (T ) = 1$, giving a general counterexample to a conjecture of Lemke and Kleitman.
DOI : 10.4064/aa168-3-5
Keywords: finite cyclic group order every sequence written form cdot ldots cdot where ldots mathop ord index mathop ind defined minimum cdots mathop ord mathop ord paper shown sequence length nmid having element multiplicity least has subsequence mathop ind other positive integers d provide example sequence length having element multiplicity d d has subsequence mathop ind giving general counterexample conjecture lemke kleitman

Xiangneng Zeng 1 ; Yuanlin Li 2 ; Pingzhi Yuan 3

1 Sino–French Institute of Nuclear Engineering and Technology Sun Yat-Sen University Guangzhou 510275, P.R. China
2 Department of Mathematics and Statistics Brock University St. Catharines, ON, Canada L2S 3A1
3 School of Mathematics South China Normal University Guangzhou 510631, P.R. China
@article{10_4064_aa168_3_5,
     author = {Xiangneng Zeng and Yuanlin Li and Pingzhi Yuan},
     title = {On a conjecture of {Lemke} and {Kleitman}},
     journal = {Acta Arithmetica},
     pages = {289--299},
     publisher = {mathdoc},
     volume = {168},
     number = {3},
     year = {2015},
     doi = {10.4064/aa168-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-5/}
}
TY  - JOUR
AU  - Xiangneng Zeng
AU  - Yuanlin Li
AU  - Pingzhi Yuan
TI  - On a conjecture of Lemke and Kleitman
JO  - Acta Arithmetica
PY  - 2015
SP  - 289
EP  - 299
VL  - 168
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-5/
DO  - 10.4064/aa168-3-5
LA  - en
ID  - 10_4064_aa168_3_5
ER  - 
%0 Journal Article
%A Xiangneng Zeng
%A Yuanlin Li
%A Pingzhi Yuan
%T On a conjecture of Lemke and Kleitman
%J Acta Arithmetica
%D 2015
%P 289-299
%V 168
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-5/
%R 10.4064/aa168-3-5
%G en
%F 10_4064_aa168_3_5
Xiangneng Zeng; Yuanlin Li; Pingzhi Yuan. On a conjecture of Lemke and Kleitman. Acta Arithmetica, Tome 168 (2015) no. 3, pp. 289-299. doi : 10.4064/aa168-3-5. http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-5/

Cité par Sources :