On a conjecture of Lemke and Kleitman
Acta Arithmetica, Tome 168 (2015) no. 3, pp. 289-299
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $G$ be a finite cyclic group of order $n\ge 2$. Every sequence $S$ over $G$ can be written in the form $S = (n_1g)\cdot \ldots \cdot (n_lg)$ where $g \in G$ and $n_1, \ldots , n_l \in [1, \mathop{\rm ord} (g)]$, and the index $\mathop{\rm ind} (S)$ of $S$ is defined as the minimum of $(n_1 +\cdots + n_l )/ \mathop{\rm ord} (g)$ over all $g\in G$ with $\mathop{\rm ord} (g) = n$. In this paper it is shown that any sequence $S$ over $G$ of length $|S| \ge n \ge 5$, $2 \nmid n$, having an element with multiplicity at least ${n/3}$ has a subsequence $T$ with $\mathop{\rm ind} (T ) = 1$. On the other hand, if $n, d\ge 2$ are positive integers with $d\,|\,n$ and $n>d^2(d^3-d^2+d+1)$, we provide an example of a sequence $S$ of length $|S| \ge n$ having an element with multiplicity $l={n/d}-d(d-1)-1$ such that $S$ has no subsequence $T$ with $\mathop{\rm ind} (T ) = 1$, giving a general counterexample to a conjecture of Lemke and Kleitman.
Keywords:
finite cyclic group order every sequence written form cdot ldots cdot where ldots mathop ord index mathop ind defined minimum cdots mathop ord mathop ord paper shown sequence length nmid having element multiplicity least has subsequence mathop ind other positive integers d provide example sequence length having element multiplicity d d has subsequence mathop ind giving general counterexample conjecture lemke kleitman
Affiliations des auteurs :
Xiangneng Zeng 1 ; Yuanlin Li 2 ; Pingzhi Yuan 3
@article{10_4064_aa168_3_5,
author = {Xiangneng Zeng and Yuanlin Li and Pingzhi Yuan},
title = {On a conjecture of {Lemke} and {Kleitman}},
journal = {Acta Arithmetica},
pages = {289--299},
publisher = {mathdoc},
volume = {168},
number = {3},
year = {2015},
doi = {10.4064/aa168-3-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-5/}
}
TY - JOUR AU - Xiangneng Zeng AU - Yuanlin Li AU - Pingzhi Yuan TI - On a conjecture of Lemke and Kleitman JO - Acta Arithmetica PY - 2015 SP - 289 EP - 299 VL - 168 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa168-3-5/ DO - 10.4064/aa168-3-5 LA - en ID - 10_4064_aa168_3_5 ER -
Xiangneng Zeng; Yuanlin Li; Pingzhi Yuan. On a conjecture of Lemke and Kleitman. Acta Arithmetica, Tome 168 (2015) no. 3, pp. 289-299. doi: 10.4064/aa168-3-5
Cité par Sources :