$L_p$- and $S_{p,q}^rB$-discrepancy of (order $2$) digital nets
Acta Arithmetica, Tome 168 (2015) no. 2, pp. 139-159.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Dick proved that all dyadic order $2$ digital nets satisfy optimal upper bounds on the $L_p$-discrepancy. We prove this for arbitrary prime base $b$ with an alternative technique using Haar bases. Furthermore, we prove that all digital nets satisfy optimal upper bounds on the discrepancy function in Besov spaces with dominating mixed smoothness for a certain parameter range, and enlarge that range for order $2$ digital nets. The discrepancy function in Triebel–Lizorkin and Sobolev spaces with dominating mixed smoothness is considered as well.
DOI : 10.4064/aa168-2-4
Keywords: dick proved dyadic order digital nets satisfy optimal upper bounds p discrepancy prove arbitrary prime base alternative technique using haar bases furthermore prove digital nets satisfy optimal upper bounds discrepancy function besov spaces dominating mixed smoothness certain parameter range enlarge range order digital nets discrepancy function triebel lizorkin sobolev spaces dominating mixed smoothness considered

Lev Markhasin 1

1 Institut für Stochastik und Anwendungen Universität Stuttgart Pfaffenwaldring 57 70569 Stuttgart, Germany
@article{10_4064_aa168_2_4,
     author = {Lev Markhasin},
     title = {$L_p$- and $S_{p,q}^rB$-discrepancy of (order $2$) digital nets},
     journal = {Acta Arithmetica},
     pages = {139--159},
     publisher = {mathdoc},
     volume = {168},
     number = {2},
     year = {2015},
     doi = {10.4064/aa168-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-4/}
}
TY  - JOUR
AU  - Lev Markhasin
TI  - $L_p$- and $S_{p,q}^rB$-discrepancy of (order $2$) digital nets
JO  - Acta Arithmetica
PY  - 2015
SP  - 139
EP  - 159
VL  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-4/
DO  - 10.4064/aa168-2-4
LA  - en
ID  - 10_4064_aa168_2_4
ER  - 
%0 Journal Article
%A Lev Markhasin
%T $L_p$- and $S_{p,q}^rB$-discrepancy of (order $2$) digital nets
%J Acta Arithmetica
%D 2015
%P 139-159
%V 168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-4/
%R 10.4064/aa168-2-4
%G en
%F 10_4064_aa168_2_4
Lev Markhasin. $L_p$- and $S_{p,q}^rB$-discrepancy of (order $2$) digital nets. Acta Arithmetica, Tome 168 (2015) no. 2, pp. 139-159. doi : 10.4064/aa168-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa168-2-4/

Cité par Sources :