On invariants of elliptic curves on average
Acta Arithmetica, Tome 168 (2015) no. 1, pp. 31-70.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove several results regarding some invariants of elliptic curves on average over the family of all elliptic curves inside a box of sides $A$ and $B$. As an example, let $E$ be an elliptic curve defined over $\mathbb{Q}$ and $p$ be a prime of good reduction for $E$. Let $e_E(p)$ be the exponent of the group of rational points of the reduction modulo $p$ of $E$ over the finite field $\mathbb{F}_p$. Let $\mathcal{C}$ be the family of elliptic curves $$E_{a,b}:y^2=x^3+ax+b,$$ where $|a|\leq A$ and $|b|\leq B$. We prove that, for any $c>1$ and $k\in \mathbb{N}$, $$ \frac{1}{|\mathcal{C}|} \sum_{E\in \mathcal{C}} \sum_{p\leq x} e_E^k(p) = C_k \mathop{\rm li} (x^{k+1})+O\biggl(\frac{x^{k+1}}{(\log{x})^c} \bigg) $$ as $x\rightarrow \infty$, as long as $A, B>\exp(c_1 (\log{x})^{1/2})$ and $AB>x(\log{x})^{4+2c}$, where $c_1$ is a suitable positive constant. Here $C_k$ is an explicit constant given in the paper which depends only on $k$, and $\mathop{\rm li} (x)=\int_{2}^x dt/\!\log{t}$. We prove several similar results as corollaries to a general theorem. The method of the proof is capable of improving some of the known results with $A, B>x^\epsilon$ and $AB>x(\log{x})^\delta$ to $A, B>\exp(c_1 (\log{x})^{1/2})$ and $AB>x(\log{x})^\delta$.
DOI : 10.4064/aa168-1-3
Keywords: prove several results regarding invariants elliptic curves average family elliptic curves inside box sides example elliptic curve defined mathbb prime reduction exponent group rational points reduction modulo finite field mathbb mathcal family elliptic curves where leq leq prove mathbb frac mathcal sum mathcal sum leq p mathop biggl frac log bigg rightarrow infty long exp log log where suitable positive constant here explicit constant given paper which depends only mathop int log prove several similar results corollaries general theorem method proof capable improving known results epsilon log delta exp log log delta

Amir Akbary 1 ; Adam Tyler Felix 1

1 Department of Mathematics and Computer Science University of Lethbridge 4401 University Drive Lethbridge, AB, T1K 3M4, Canada
@article{10_4064_aa168_1_3,
     author = {Amir Akbary and Adam Tyler Felix},
     title = {On invariants of elliptic curves on average},
     journal = {Acta Arithmetica},
     pages = {31--70},
     publisher = {mathdoc},
     volume = {168},
     number = {1},
     year = {2015},
     doi = {10.4064/aa168-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-3/}
}
TY  - JOUR
AU  - Amir Akbary
AU  - Adam Tyler Felix
TI  - On invariants of elliptic curves on average
JO  - Acta Arithmetica
PY  - 2015
SP  - 31
EP  - 70
VL  - 168
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-3/
DO  - 10.4064/aa168-1-3
LA  - en
ID  - 10_4064_aa168_1_3
ER  - 
%0 Journal Article
%A Amir Akbary
%A Adam Tyler Felix
%T On invariants of elliptic curves on average
%J Acta Arithmetica
%D 2015
%P 31-70
%V 168
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-3/
%R 10.4064/aa168-1-3
%G en
%F 10_4064_aa168_1_3
Amir Akbary; Adam Tyler Felix. On invariants of elliptic curves on average. Acta Arithmetica, Tome 168 (2015) no. 1, pp. 31-70. doi : 10.4064/aa168-1-3. http://geodesic.mathdoc.fr/articles/10.4064/aa168-1-3/

Cité par Sources :