A localized uniformly Jarník set in continued fractions
Acta Arithmetica, Tome 167 (2015) no. 3, pp. 267-280.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For any $x\in [0,1]$, let $[a_1(x), a_2(x),\dots]$ be its continued fraction expansion and $\{q_n(x)\}_{n\ge 1}$ be the sequence of the denominators of its convergents. For any $\tau>0$, we call $$ U(\tau)=\bigg\{x \in [0,1): \bigg|x-\frac{p_n(x)}{q_n(x)}\bigg| \bigg(\frac{1}{q_n(x)}\bigg)^{{\tau+2}} \ {\text{for}}\ n\in \mathbb{N} \ {\text{ultimately}} \big\} $$ a uniformly Jarník set, a collection of points which can be uniformly well approximated by its convergents eventually. In this paper, instead of a constant function of $\tau$, we consider a localized version of the above set, namely $$ U_{\text{loc}}(\tau)=\bigg\{x \in [0,1): \bigg|x-\frac{p_n(x)}{q_n(x)}\bigg| \bigg(\frac{1}{q_n(x)}\bigg)^{{\tau(x)+2}} \ {\text{for}}\ n\in \mathbb N \ {\text{ultimately}}\biggr\}, $$ where $\tau:[0,1]\to \mathbb R^+$ is a continuous function. We call $U_{\text{loc}}(\tau)$ a localized uniformly Jarník set, and determine its Hausdorff dimension.
DOI : 10.4064/aa167-3-5
Keywords: dots its continued fraction expansion sequence denominators its convergents tau call tau bigg bigg x frac bigg bigg frac bigg tau text mathbb text ultimately uniformly jarn set collection points which uniformly approximated its convergents eventually paper instead constant function tau consider localized version above set namely text loc tau bigg bigg x frac bigg bigg frac bigg tau text mathbb text ultimately biggr where tau mathbb continuous function call text loc tau localized uniformly jarn set determine its hausdorff dimension

Yuanhong Chen 1 ; Yu Sun 2 ; Xiaojun Zhao 3

1 School of Mathematics and Statistics Huazhong University of Science and Technology 430074 Wuhan, Hubei, P.R. China
2 Faculty of Science Jiangsu University 212013 Zhenjiang, Jiangsu, P.R. China
3 School of Economics Peking University 100871 Beijing, P.R. China
@article{10_4064_aa167_3_5,
     author = {Yuanhong Chen and Yu Sun and Xiaojun Zhao},
     title = {A localized uniformly {Jarn{\'\i}k} set in continued fractions},
     journal = {Acta Arithmetica},
     pages = {267--280},
     publisher = {mathdoc},
     volume = {167},
     number = {3},
     year = {2015},
     doi = {10.4064/aa167-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-3-5/}
}
TY  - JOUR
AU  - Yuanhong Chen
AU  - Yu Sun
AU  - Xiaojun Zhao
TI  - A localized uniformly Jarník set in continued fractions
JO  - Acta Arithmetica
PY  - 2015
SP  - 267
EP  - 280
VL  - 167
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa167-3-5/
DO  - 10.4064/aa167-3-5
LA  - en
ID  - 10_4064_aa167_3_5
ER  - 
%0 Journal Article
%A Yuanhong Chen
%A Yu Sun
%A Xiaojun Zhao
%T A localized uniformly Jarník set in continued fractions
%J Acta Arithmetica
%D 2015
%P 267-280
%V 167
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa167-3-5/
%R 10.4064/aa167-3-5
%G en
%F 10_4064_aa167_3_5
Yuanhong Chen; Yu Sun; Xiaojun Zhao. A localized uniformly Jarník set in continued fractions. Acta Arithmetica, Tome 167 (2015) no. 3, pp. 267-280. doi : 10.4064/aa167-3-5. http://geodesic.mathdoc.fr/articles/10.4064/aa167-3-5/

Cité par Sources :