End-symmetric continued fractions and quadratic congruences
Acta Arithmetica, Tome 167 (2015) no. 2, pp. 173-187.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that for a fixed integer $n \not =\pm 2$, the congruence $x^2 + nx \pm 1 \equiv 0 \ ({\rm mod}\ \alpha )$ has the solution $\beta $ with $0 \beta \alpha $ if and only if $\alpha /\beta $ has a continued fraction expansion with sequence of quotients having one of a finite number of possible asymmetry types. This generalizes the old theorem that a rational number $\alpha /\beta > 1$ in lowest terms has a symmetric continued fraction precisely when $\beta ^2 \equiv \pm 1\ ({\rm mod}\ \alpha )$.
DOI : 10.4064/aa167-2-5
Keywords: fixed integer congruence equiv mod alpha has solution beta beta alpha only alpha beta has continued fraction expansion sequence quotients having finite number possible asymmetry types generalizes old theorem rational number alpha beta lowest terms has symmetric continued fraction precisely beta equiv mod alpha

Barry R. Smith 1

1 Department of Mathematical Sciences Lebanon Valley College Annville, PA 17003, U.S.A.
@article{10_4064_aa167_2_5,
     author = {Barry R. Smith},
     title = {End-symmetric continued fractions and quadratic congruences},
     journal = {Acta Arithmetica},
     pages = {173--187},
     publisher = {mathdoc},
     volume = {167},
     number = {2},
     year = {2015},
     doi = {10.4064/aa167-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-5/}
}
TY  - JOUR
AU  - Barry R. Smith
TI  - End-symmetric continued fractions and quadratic congruences
JO  - Acta Arithmetica
PY  - 2015
SP  - 173
EP  - 187
VL  - 167
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-5/
DO  - 10.4064/aa167-2-5
LA  - en
ID  - 10_4064_aa167_2_5
ER  - 
%0 Journal Article
%A Barry R. Smith
%T End-symmetric continued fractions and quadratic congruences
%J Acta Arithmetica
%D 2015
%P 173-187
%V 167
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-5/
%R 10.4064/aa167-2-5
%G en
%F 10_4064_aa167_2_5
Barry R. Smith. End-symmetric continued fractions and quadratic congruences. Acta Arithmetica, Tome 167 (2015) no. 2, pp. 173-187. doi : 10.4064/aa167-2-5. http://geodesic.mathdoc.fr/articles/10.4064/aa167-2-5/

Cité par Sources :