On $q$-orders in primitive modular groups
Acta Arithmetica, Tome 166 (2014) no. 4, pp. 397-404.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an upper bound for the number of primes $p \leq x$ in an arithmetic progression $1 \pmod Q$ that are exceptional in the sense that $\mathbb{Z}^*_p$ has no generator in the interval $[1, B].$ As a consequence we prove that if $Q >\exp \bigl[c\frac{\log p}{\log B} (\log \log p)\big]$ with a sufficiently large absolute constant $c$, then there exists a prime $q$ dividing $Q$ such that $\nu_q(\mathop{\rm ord}_p b) =\nu_q(p-1)$ for some positive integer $b\le B.$ Moreover we estimate the number of such $q$'s under suitable conditions.
DOI : 10.4064/aa166-4-5
Keywords: prove upper bound number primes leq arithmetic progression pmod exceptional sense mathbb * has generator interval consequence prove exp bigl frac log log log log sufficiently large absolute constant there exists prime dividing mathop ord p positive integer moreover estimate number under suitable conditions

Jacek Pomykała 1

1 Institute of Mathematics Faculty of Mathematics, Informatics and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_aa166_4_5,
     author = {Jacek Pomyka{\l}a},
     title = {On $q$-orders in primitive modular groups},
     journal = {Acta Arithmetica},
     pages = {397--404},
     publisher = {mathdoc},
     volume = {166},
     number = {4},
     year = {2014},
     doi = {10.4064/aa166-4-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-5/}
}
TY  - JOUR
AU  - Jacek Pomykała
TI  - On $q$-orders in primitive modular groups
JO  - Acta Arithmetica
PY  - 2014
SP  - 397
EP  - 404
VL  - 166
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-5/
DO  - 10.4064/aa166-4-5
LA  - en
ID  - 10_4064_aa166_4_5
ER  - 
%0 Journal Article
%A Jacek Pomykała
%T On $q$-orders in primitive modular groups
%J Acta Arithmetica
%D 2014
%P 397-404
%V 166
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-5/
%R 10.4064/aa166-4-5
%G en
%F 10_4064_aa166_4_5
Jacek Pomykała. On $q$-orders in primitive modular groups. Acta Arithmetica, Tome 166 (2014) no. 4, pp. 397-404. doi : 10.4064/aa166-4-5. http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-5/

Cité par Sources :