On $q$-orders in primitive modular groups
Acta Arithmetica, Tome 166 (2014) no. 4, pp. 397-404
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove an upper bound for the number of primes $p \leq x$ in an arithmetic progression $1 \pmod Q$ that are exceptional in the sense that $\mathbb{Z}^*_p$ has no generator in the interval $[1, B].$ As a consequence we prove that if $Q >\exp \bigl[c\frac{\log p}{\log B} (\log \log p)\big]$ with a sufficiently large absolute constant $c$, then there exists a prime $q$ dividing $Q$ such that $\nu_q(\mathop{\rm ord}_p b) =\nu_q(p-1)$ for some positive integer $b\le B.$ Moreover we estimate the number of such $q$'s under suitable conditions.
Keywords:
prove upper bound number primes leq arithmetic progression pmod exceptional sense mathbb * has generator interval consequence prove exp bigl frac log log log log sufficiently large absolute constant there exists prime dividing mathop ord p positive integer moreover estimate number under suitable conditions
Affiliations des auteurs :
Jacek Pomykała 1
@article{10_4064_aa166_4_5,
author = {Jacek Pomyka{\l}a},
title = {On $q$-orders in primitive modular groups},
journal = {Acta Arithmetica},
pages = {397--404},
publisher = {mathdoc},
volume = {166},
number = {4},
year = {2014},
doi = {10.4064/aa166-4-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-5/}
}
Jacek Pomykała. On $q$-orders in primitive modular groups. Acta Arithmetica, Tome 166 (2014) no. 4, pp. 397-404. doi: 10.4064/aa166-4-5
Cité par Sources :