Ternary quadratic forms $ax^2+by^2+cz^2$
representing all positive integers $8k+4$
Acta Arithmetica, Tome 166 (2014) no. 4, pp. 391-396
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Under the assumption that the ternary form $x^2+2y^2+5z^2+xz$ represents all odd positive integers, we prove that a ternary quadratic form $ax^2+by^2+cz^2$ $(a,b,c \in \mathbb {N})$ represents all positive integers $n\equiv 4\ ({\rm mod}\ 8)$ if and only if it represents the eight integers $4,12,20,28,52,$ $60,140$ and $308$.
Keywords:
under assumption ternary form represents odd positive integers prove ternary quadratic form mathbb represents positive integers equiv mod only represents eight integers
Affiliations des auteurs :
Kenneth S. Williams  1
@article{10_4064_aa166_4_4,
author = {Kenneth S. Williams},
title = {Ternary quadratic forms $ax^2+by^2+cz^2$
representing all positive integers $8k+4$},
journal = {Acta Arithmetica},
pages = {391--396},
year = {2014},
volume = {166},
number = {4},
doi = {10.4064/aa166-4-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-4/}
}
TY - JOUR AU - Kenneth S. Williams TI - Ternary quadratic forms $ax^2+by^2+cz^2$ representing all positive integers $8k+4$ JO - Acta Arithmetica PY - 2014 SP - 391 EP - 396 VL - 166 IS - 4 UR - http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-4/ DO - 10.4064/aa166-4-4 LA - en ID - 10_4064_aa166_4_4 ER -
Kenneth S. Williams. Ternary quadratic forms $ax^2+by^2+cz^2$ representing all positive integers $8k+4$. Acta Arithmetica, Tome 166 (2014) no. 4, pp. 391-396. doi: 10.4064/aa166-4-4
Cité par Sources :