Ternary quadratic forms $ax^2+by^2+cz^2$ representing all positive integers $8k+4$
Acta Arithmetica, Tome 166 (2014) no. 4, pp. 391-396.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Under the assumption that the ternary form $x^2+2y^2+5z^2+xz$ represents all odd positive integers, we prove that a ternary quadratic form $ax^2+by^2+cz^2$ $(a,b,c \in \mathbb {N})$ represents all positive integers $n\equiv 4\ ({\rm mod}\ 8)$ if and only if it represents the eight integers $4,12,20,28,52,$ $60,140$ and $308$.
DOI : 10.4064/aa166-4-4
Keywords: under assumption ternary form represents odd positive integers prove ternary quadratic form mathbb represents positive integers equiv mod only represents eight integers

Kenneth S. Williams 1

1 School of Mathematics and Statistics Carleton University Ottawa, Ontario, Canada K1S 5B6
@article{10_4064_aa166_4_4,
     author = {Kenneth S. Williams},
     title = {Ternary quadratic forms $ax^2+by^2+cz^2$
 representing all positive integers $8k+4$},
     journal = {Acta Arithmetica},
     pages = {391--396},
     publisher = {mathdoc},
     volume = {166},
     number = {4},
     year = {2014},
     doi = {10.4064/aa166-4-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-4/}
}
TY  - JOUR
AU  - Kenneth S. Williams
TI  - Ternary quadratic forms $ax^2+by^2+cz^2$
 representing all positive integers $8k+4$
JO  - Acta Arithmetica
PY  - 2014
SP  - 391
EP  - 396
VL  - 166
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-4/
DO  - 10.4064/aa166-4-4
LA  - en
ID  - 10_4064_aa166_4_4
ER  - 
%0 Journal Article
%A Kenneth S. Williams
%T Ternary quadratic forms $ax^2+by^2+cz^2$
 representing all positive integers $8k+4$
%J Acta Arithmetica
%D 2014
%P 391-396
%V 166
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-4/
%R 10.4064/aa166-4-4
%G en
%F 10_4064_aa166_4_4
Kenneth S. Williams. Ternary quadratic forms $ax^2+by^2+cz^2$
 representing all positive integers $8k+4$. Acta Arithmetica, Tome 166 (2014) no. 4, pp. 391-396. doi : 10.4064/aa166-4-4. http://geodesic.mathdoc.fr/articles/10.4064/aa166-4-4/

Cité par Sources :