A dynamical Shafarevich theorem for twists of rational morphisms
Acta Arithmetica, Tome 166 (2014) no. 1, pp. 69-80.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $K$ denote a number field, $S$ a finite set of places of $K$, and $\phi :\mathbb {P}^n\rightarrow \mathbb {P}^n$ a rational morphism defined over $K$. The main result of this paper states that there are only finitely many twists of $\phi $ defined over $K$ which have good reduction at all places outside $S$. This answers a question of Silverman in the affirmative.
DOI : 10.4064/aa166-1-6
Keywords: denote number field finite set places phi mathbb rightarrow mathbb rational morphism defined main result paper states there only finitely many twists phi defined which have reduction places outside answers question silverman affirmative

Brian Justin Stout 1

1 Department of Mathemaics U.S. Naval Academy Chauvenet Hall Annapolis, MD, 21401-1363, U.S.A.
@article{10_4064_aa166_1_6,
     author = {Brian Justin Stout},
     title = {A dynamical {Shafarevich} theorem
 for twists of rational morphisms},
     journal = {Acta Arithmetica},
     pages = {69--80},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2014},
     doi = {10.4064/aa166-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-6/}
}
TY  - JOUR
AU  - Brian Justin Stout
TI  - A dynamical Shafarevich theorem
 for twists of rational morphisms
JO  - Acta Arithmetica
PY  - 2014
SP  - 69
EP  - 80
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-6/
DO  - 10.4064/aa166-1-6
LA  - en
ID  - 10_4064_aa166_1_6
ER  - 
%0 Journal Article
%A Brian Justin Stout
%T A dynamical Shafarevich theorem
 for twists of rational morphisms
%J Acta Arithmetica
%D 2014
%P 69-80
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-6/
%R 10.4064/aa166-1-6
%G en
%F 10_4064_aa166_1_6
Brian Justin Stout. A dynamical Shafarevich theorem
 for twists of rational morphisms. Acta Arithmetica, Tome 166 (2014) no. 1, pp. 69-80. doi : 10.4064/aa166-1-6. http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-6/

Cité par Sources :