Asymptotic nature of higher Mahler measure
Acta Arithmetica, Tome 166 (2014) no. 1, pp. 15-21.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider Akatsuka's zeta Mahler measure as a generating function of the higher Mahler measure $m_k(P)$ of a polynomial $P,$ where $m_k(P)$ is the integral of $\log^{k}| P |$ over the complex unit circle. Restricting ourselves to $P(x)=x-r$ with $| r |=1$ we show some new asymptotic results regarding $m_k(P)$, in particular ${| m_k(P)|/k!} \rightarrow {1/\pi }$ as $k \rightarrow \infty .$
DOI : 10.4064/aa166-1-2
Keywords: consider akatsukas zeta mahler measure generating function higher mahler measure polynomial where integral log complex unit circle restricting ourselves x r asymptotic results regarding particular rightarrow rightarrow infty

Arunabha Biswas 1

1 Department of Mathematics and Statistics Texas Tech University Broadway & Boston Lubbock, TX 79409-1042, U.S.A.
@article{10_4064_aa166_1_2,
     author = {Arunabha Biswas},
     title = {Asymptotic nature of higher {Mahler} measure},
     journal = {Acta Arithmetica},
     pages = {15--21},
     publisher = {mathdoc},
     volume = {166},
     number = {1},
     year = {2014},
     doi = {10.4064/aa166-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-2/}
}
TY  - JOUR
AU  - Arunabha Biswas
TI  - Asymptotic nature of higher Mahler measure
JO  - Acta Arithmetica
PY  - 2014
SP  - 15
EP  - 21
VL  - 166
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-2/
DO  - 10.4064/aa166-1-2
LA  - en
ID  - 10_4064_aa166_1_2
ER  - 
%0 Journal Article
%A Arunabha Biswas
%T Asymptotic nature of higher Mahler measure
%J Acta Arithmetica
%D 2014
%P 15-21
%V 166
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-2/
%R 10.4064/aa166-1-2
%G en
%F 10_4064_aa166_1_2
Arunabha Biswas. Asymptotic nature of higher Mahler measure. Acta Arithmetica, Tome 166 (2014) no. 1, pp. 15-21. doi : 10.4064/aa166-1-2. http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-2/

Cité par Sources :