Asymptotic nature of higher Mahler measure
Acta Arithmetica, Tome 166 (2014) no. 1, pp. 15-21
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider Akatsuka's zeta Mahler measure as a generating function of the higher Mahler measure $m_k(P)$ of a polynomial $P,$ where $m_k(P)$ is the integral of $\log^{k}| P |$ over the complex unit circle. Restricting ourselves to $P(x)=x-r$ with $| r |=1$ we show some new asymptotic results regarding $m_k(P)$, in particular ${| m_k(P)|/k!} \rightarrow {1/\pi }$ as $k \rightarrow \infty .$
Keywords:
consider akatsukas zeta mahler measure generating function higher mahler measure polynomial where integral log complex unit circle restricting ourselves x r asymptotic results regarding particular rightarrow rightarrow infty
Affiliations des auteurs :
Arunabha Biswas  1
@article{10_4064_aa166_1_2,
author = {Arunabha Biswas},
title = {Asymptotic nature of higher {Mahler} measure},
journal = {Acta Arithmetica},
pages = {15--21},
year = {2014},
volume = {166},
number = {1},
doi = {10.4064/aa166-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa166-1-2/}
}
Arunabha Biswas. Asymptotic nature of higher Mahler measure. Acta Arithmetica, Tome 166 (2014) no. 1, pp. 15-21. doi: 10.4064/aa166-1-2
Cité par Sources :