Generalised Weber functions
Acta Arithmetica, Tome 164 (2014) no. 4, pp. 309-341.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A generalised Weber function is given by $\mathfrak w_N(z) = \eta (z/N)/\eta (z)$, where $\eta (z)$ is the Dedekind function and $N$ is any integer; the original function corresponds to $N=2$. We classify the cases where some power $\mathfrak w_N^e$ evaluated at some quadratic integer generates the ring class field associated to an order of an imaginary quadratic field. We compare the heights of our invariants by giving a general formula for the degree of the modular equation relating $\mathfrak w_N(z)$ and $j(z)$. Our ultimate goal is the use of these invariants in constructing reductions of elliptic curves over finite fields suitable for cryptographic use.
DOI : 10.4064/aa164-4-1
Keywords: generalised weber function given mathfrak eta eta where eta dedekind function integer original function corresponds classify cases where power mathfrak evaluated quadratic integer generates ring class field associated order imaginary quadratic field compare heights invariants giving general formula degree modular equation relating mathfrak ultimate these invariants constructing reductions elliptic curves finite fields suitable cryptographic

Andreas Enge 1 ; François Morain 2

1 INRIA, LFANT Univ. Bordeaux, IMB CNRS, IMB, UMR 5251 33400 Talence, France
2 INRIA Saclay–Île-de-France and LIX (CNRS/UMR 7161) École polytechnique 91128 Palaiseau Cedex, France
@article{10_4064_aa164_4_1,
     author = {Andreas Enge and Fran\c{c}ois Morain},
     title = {Generalised {Weber} functions},
     journal = {Acta Arithmetica},
     pages = {309--341},
     publisher = {mathdoc},
     volume = {164},
     number = {4},
     year = {2014},
     doi = {10.4064/aa164-4-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-4-1/}
}
TY  - JOUR
AU  - Andreas Enge
AU  - François Morain
TI  - Generalised Weber functions
JO  - Acta Arithmetica
PY  - 2014
SP  - 309
EP  - 341
VL  - 164
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-4-1/
DO  - 10.4064/aa164-4-1
LA  - en
ID  - 10_4064_aa164_4_1
ER  - 
%0 Journal Article
%A Andreas Enge
%A François Morain
%T Generalised Weber functions
%J Acta Arithmetica
%D 2014
%P 309-341
%V 164
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-4-1/
%R 10.4064/aa164-4-1
%G en
%F 10_4064_aa164_4_1
Andreas Enge; François Morain. Generalised Weber functions. Acta Arithmetica, Tome 164 (2014) no. 4, pp. 309-341. doi : 10.4064/aa164-4-1. http://geodesic.mathdoc.fr/articles/10.4064/aa164-4-1/

Cité par Sources :