The mean square of the divisor function
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 181-208
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let
$d(n)$ be the divisor function. In 1916, S. Ramanujan stated
without proof that
$$
\sum_{n\leq x}d^2(n)=xP(\log x)+E(x),
$$
where $P(y)$ is a cubic polynomial in $y$ and
$$
E(x)=O(x^{{3/ 5}+\varepsilon}),
$$
with $\varepsilon$ being a sufficiently small positive constant. He also stated
that, assuming the Riemann Hypothesis (RH),
$$
E(x)=O(x^{{1/ 2}+\varepsilon}).
$$In 1922, B. M. Wilson proved the above result unconditionally. The
direct application of the RH would produce
$$
E(x)=O(x^{1/ 2}(\log x)^5\log\log x).
$$
In 2003, K. Ramachandra and A. Sankaranarayanan proved the above
result without any assumption.In this paper, we prove
$$
E(x)=O(x^{1/ 2}(\log x)^5).
$$
Keywords:
divisor function ramanujan stated without proof sum leq log where cubic polynomial varepsilon varepsilon being sufficiently small positive constant stated assuming riemann hypothesis varepsilon wilson proved above result unconditionally direct application would produce log log log ramachandra sankaranarayanan proved above result without assumption paper prove log
Affiliations des auteurs :
Chaohua Jia 1 ; Ayyadurai Sankaranarayanan 2
@article{10_4064_aa164_2_7,
author = {Chaohua Jia and Ayyadurai Sankaranarayanan},
title = {The mean square of the divisor function},
journal = {Acta Arithmetica},
pages = {181--208},
publisher = {mathdoc},
volume = {164},
number = {2},
year = {2014},
doi = {10.4064/aa164-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-7/}
}
TY - JOUR AU - Chaohua Jia AU - Ayyadurai Sankaranarayanan TI - The mean square of the divisor function JO - Acta Arithmetica PY - 2014 SP - 181 EP - 208 VL - 164 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-7/ DO - 10.4064/aa164-2-7 LA - en ID - 10_4064_aa164_2_7 ER -
Chaohua Jia; Ayyadurai Sankaranarayanan. The mean square of the divisor function. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 181-208. doi: 10.4064/aa164-2-7
Cité par Sources :