The mean square of the divisor function
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 181-208.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $d(n)$ be the divisor function. In 1916, S. Ramanujan stated without proof that $$ \sum_{n\leq x}d^2(n)=xP(\log x)+E(x), $$ where $P(y)$ is a cubic polynomial in $y$ and $$ E(x)=O(x^{{3/ 5}+\varepsilon}), $$ with $\varepsilon$ being a sufficiently small positive constant. He also stated that, assuming the Riemann Hypothesis (RH), $$ E(x)=O(x^{{1/ 2}+\varepsilon}). $$In 1922, B. M. Wilson proved the above result unconditionally. The direct application of the RH would produce $$ E(x)=O(x^{1/ 2}(\log x)^5\log\log x). $$ In 2003, K. Ramachandra and A. Sankaranarayanan proved the above result without any assumption.In this paper, we prove $$ E(x)=O(x^{1/ 2}(\log x)^5). $$
DOI : 10.4064/aa164-2-7
Keywords: divisor function ramanujan stated without proof sum leq log where cubic polynomial varepsilon varepsilon being sufficiently small positive constant stated assuming riemann hypothesis varepsilon wilson proved above result unconditionally direct application would produce log log log ramachandra sankaranarayanan proved above result without assumption paper prove log

Chaohua Jia 1 ; Ayyadurai Sankaranarayanan 2

1 Institute of Mathematics Academia Sinica Beijing 100190, P.R. China and Hua Loo-Keng Key Laboratory of Mathematics Chinese Academy of Sciences Beijing 100190, P.R. China
2 School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400005, India
@article{10_4064_aa164_2_7,
     author = {Chaohua Jia and Ayyadurai Sankaranarayanan},
     title = {The mean square of the divisor function},
     journal = {Acta Arithmetica},
     pages = {181--208},
     publisher = {mathdoc},
     volume = {164},
     number = {2},
     year = {2014},
     doi = {10.4064/aa164-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-7/}
}
TY  - JOUR
AU  - Chaohua Jia
AU  - Ayyadurai Sankaranarayanan
TI  - The mean square of the divisor function
JO  - Acta Arithmetica
PY  - 2014
SP  - 181
EP  - 208
VL  - 164
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-7/
DO  - 10.4064/aa164-2-7
LA  - en
ID  - 10_4064_aa164_2_7
ER  - 
%0 Journal Article
%A Chaohua Jia
%A Ayyadurai Sankaranarayanan
%T The mean square of the divisor function
%J Acta Arithmetica
%D 2014
%P 181-208
%V 164
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-7/
%R 10.4064/aa164-2-7
%G en
%F 10_4064_aa164_2_7
Chaohua Jia; Ayyadurai Sankaranarayanan. The mean square of the divisor function. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 181-208. doi : 10.4064/aa164-2-7. http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-7/

Cité par Sources :