${\bf Bad}(s,t)$ is hyperplane absolute winning
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 145-152.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

J. An proved that for any $s,t \geq 0$ such that $s + t = 1$, $\mathop {\bf Bad}\nolimits (s,t)$ is $(34\sqrt 2)^{-1}$-winning for Schmidt's game. We show that using the main lemma from [An] one can derive a stronger result, namely that $\mathop {\bf Bad}\nolimits (s,t)$ is hyperplane absolute winning in the sense of [BFKRW]. As a consequence, one can deduce the full Hausdorff dimension of $\mathop {\bf Bad}\nolimits (s,t)$ intersected with certain fractals.
DOI : 10.4064/aa164-2-4
Keywords: proved geq mathop bad nolimits sqrt winning schmidts game using main lemma derive stronger result namely mathop bad nolimits hyperplane absolute winning sense bfkrw consequence deduce full hausdorff dimension mathop bad nolimits intersected certain fractals

Erez Nesharim 1 ; David Simmons 2

1 School of Mathematical Sciences Tel Aviv University Ramat Aviv Tel Aviv 6997801, Israel
2 Department of Mathematics Ohio State University 231 W. 18th Avenue Columbus, OH 43210-1174, U.S.A.
@article{10_4064_aa164_2_4,
     author = {Erez Nesharim and David Simmons},
     title = {${\bf Bad}(s,t)$ is hyperplane absolute winning},
     journal = {Acta Arithmetica},
     pages = {145--152},
     publisher = {mathdoc},
     volume = {164},
     number = {2},
     year = {2014},
     doi = {10.4064/aa164-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-4/}
}
TY  - JOUR
AU  - Erez Nesharim
AU  - David Simmons
TI  - ${\bf Bad}(s,t)$ is hyperplane absolute winning
JO  - Acta Arithmetica
PY  - 2014
SP  - 145
EP  - 152
VL  - 164
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-4/
DO  - 10.4064/aa164-2-4
LA  - en
ID  - 10_4064_aa164_2_4
ER  - 
%0 Journal Article
%A Erez Nesharim
%A David Simmons
%T ${\bf Bad}(s,t)$ is hyperplane absolute winning
%J Acta Arithmetica
%D 2014
%P 145-152
%V 164
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-4/
%R 10.4064/aa164-2-4
%G en
%F 10_4064_aa164_2_4
Erez Nesharim; David Simmons. ${\bf Bad}(s,t)$ is hyperplane absolute winning. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 145-152. doi : 10.4064/aa164-2-4. http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-4/

Cité par Sources :