${\bf Bad}(s,t)$ is hyperplane absolute winning
Acta Arithmetica, Tome 164 (2014) no. 2, pp. 145-152
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
J. An proved that for any $s,t \geq 0$ such that $s + t = 1$, $\mathop {\bf Bad}\nolimits (s,t)$ is $(34\sqrt 2)^{-1}$-winning for Schmidt's game. We show that using the main lemma from [An] one can derive a stronger result, namely that $\mathop {\bf Bad}\nolimits (s,t)$ is hyperplane absolute winning in the sense of [BFKRW]. As a consequence, one can deduce the full Hausdorff dimension of $\mathop {\bf Bad}\nolimits (s,t)$ intersected with certain fractals.
Keywords:
proved geq mathop bad nolimits sqrt winning schmidts game using main lemma derive stronger result namely mathop bad nolimits hyperplane absolute winning sense bfkrw consequence deduce full hausdorff dimension mathop bad nolimits intersected certain fractals
Affiliations des auteurs :
Erez Nesharim 1 ; David Simmons 2
@article{10_4064_aa164_2_4,
author = {Erez Nesharim and David Simmons},
title = {${\bf Bad}(s,t)$ is hyperplane absolute winning},
journal = {Acta Arithmetica},
pages = {145--152},
publisher = {mathdoc},
volume = {164},
number = {2},
year = {2014},
doi = {10.4064/aa164-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-2-4/}
}
Erez Nesharim; David Simmons. ${\bf Bad}(s,t)$ is hyperplane absolute winning. Acta Arithmetica, Tome 164 (2014) no. 2, pp. 145-152. doi: 10.4064/aa164-2-4
Cité par Sources :