Perfect powers expressible as sums of
two fifth or seventh powers
Acta Arithmetica, Tome 164 (2014) no. 1, pp. 65-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the generalized Fermat equations with signatures $(5,5,7)$, $(5,5,19)$, and $(7,7,5)$ (and unit coefficients) have no non-trivial primitive integer solutions. Assuming GRH, we also prove the non-existence of non-trivial primitive integer solutions for the signatures $(5,5,11)$, $(5,5,13)$, and $(7,7,11)$. The main ingredients for obtaining our results are descent techniques, the method of Chabauty–Coleman, and the modular approach to Diophantine equations.
Keywords:
generalized fermat equations signatures unit coefficients have non trivial primitive integer solutions assuming grh prove non existence non trivial primitive integer solutions signatures main ingredients obtaining results descent techniques method chabauty coleman modular approach diophantine equations
Affiliations des auteurs :
Sander R. Dahmen 1 ; Samir Siksek 2
@article{10_4064_aa164_1_5,
author = {Sander R. Dahmen and Samir Siksek},
title = {Perfect powers expressible as sums of
two fifth or seventh powers},
journal = {Acta Arithmetica},
pages = {65--100},
publisher = {mathdoc},
volume = {164},
number = {1},
year = {2014},
doi = {10.4064/aa164-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-5/}
}
TY - JOUR AU - Sander R. Dahmen AU - Samir Siksek TI - Perfect powers expressible as sums of two fifth or seventh powers JO - Acta Arithmetica PY - 2014 SP - 65 EP - 100 VL - 164 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-5/ DO - 10.4064/aa164-1-5 LA - en ID - 10_4064_aa164_1_5 ER -
Sander R. Dahmen; Samir Siksek. Perfect powers expressible as sums of two fifth or seventh powers. Acta Arithmetica, Tome 164 (2014) no. 1, pp. 65-100. doi: 10.4064/aa164-1-5
Cité par Sources :