Polynomial relations amongst algebraic units of low measure
Acta Arithmetica, Tome 164 (2014) no. 1, pp. 25-30.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For an algebraic number field $\mathbb K$ and a subset $\{\alpha _1, \ldots , \alpha _r \} \subseteq \mathcal {O}_{\mathbb K}$, we establish a lower bound for the average of the logarithmic heights that depends on the ideal of polynomials in $\mathbb Q[x_1, \ldots , x_r]$ vanishing at the point $(\alpha _1, \ldots , \alpha _r )$.
DOI : 10.4064/aa164-1-2
Keywords: algebraic number field mathbb subset alpha ldots alpha subseteq mathcal mathbb establish lower bound average logarithmic heights depends ideal polynomials mathbb ldots vanishing point alpha ldots alpha

John Garza 1

1 Drake University 2507 University Ave Des Moines, IA 50311, U.S.A.
@article{10_4064_aa164_1_2,
     author = {John Garza},
     title = {Polynomial relations amongst algebraic units of low measure},
     journal = {Acta Arithmetica},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {164},
     number = {1},
     year = {2014},
     doi = {10.4064/aa164-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-2/}
}
TY  - JOUR
AU  - John Garza
TI  - Polynomial relations amongst algebraic units of low measure
JO  - Acta Arithmetica
PY  - 2014
SP  - 25
EP  - 30
VL  - 164
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-2/
DO  - 10.4064/aa164-1-2
LA  - en
ID  - 10_4064_aa164_1_2
ER  - 
%0 Journal Article
%A John Garza
%T Polynomial relations amongst algebraic units of low measure
%J Acta Arithmetica
%D 2014
%P 25-30
%V 164
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-2/
%R 10.4064/aa164-1-2
%G en
%F 10_4064_aa164_1_2
John Garza. Polynomial relations amongst algebraic units of low measure. Acta Arithmetica, Tome 164 (2014) no. 1, pp. 25-30. doi : 10.4064/aa164-1-2. http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-2/

Cité par Sources :