Polynomial relations amongst algebraic units of low measure
Acta Arithmetica, Tome 164 (2014) no. 1, pp. 25-30
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For an algebraic number field $\mathbb K$ and a subset $\{\alpha _1, \ldots , \alpha _r \} \subseteq \mathcal {O}_{\mathbb K}$, we establish a lower bound for the average of the logarithmic heights that depends on the ideal of polynomials in $\mathbb Q[x_1, \ldots , x_r]$ vanishing at the point $(\alpha _1, \ldots , \alpha _r )$.
Keywords:
algebraic number field mathbb subset alpha ldots alpha subseteq mathcal mathbb establish lower bound average logarithmic heights depends ideal polynomials mathbb ldots vanishing point alpha ldots alpha
Affiliations des auteurs :
John Garza 1
@article{10_4064_aa164_1_2,
author = {John Garza},
title = {Polynomial relations amongst algebraic units of low measure},
journal = {Acta Arithmetica},
pages = {25--30},
publisher = {mathdoc},
volume = {164},
number = {1},
year = {2014},
doi = {10.4064/aa164-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa164-1-2/}
}
John Garza. Polynomial relations amongst algebraic units of low measure. Acta Arithmetica, Tome 164 (2014) no. 1, pp. 25-30. doi: 10.4064/aa164-1-2
Cité par Sources :