Rademacher–Carlitz polynomials
Acta Arithmetica, Tome 163 (2014) no. 4, pp. 379-393.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce and study the Rademacher–Carlitz polynomial \[ \operatorname{R}(u, v, s, t, a, b) := \sum_{ k = \lceil s \rceil }^{ \lceil s \rceil + b - 1 } u^{ \lfloor{ {( ka + t) \rfloor}/{ b } } } v^k \] where $a, b \in \mathbb Z_{ >0 }$, $s, t \in \mathbb R$, and $u$ and $v$ are variables. These polynomials generalize and unify various Dedekind-like sums and polynomials; most naturally, one may view $\operatorname{R}(u, v, s, t, a, b)$ as a polynomial analogue (in the sense of Carlitz) of the Dedekind–Rademacher sum \[ \operatorname{r}_t(a,b) := \sum_{k=0}^{b-1}\bigg(\bigg(\frac{ka+t}{b}\bigg)\bigg) \bigg(\bigg(\frac{k}{b} \bigg)\bigg) , \] which appears in various number-theoretic, combinatorial, geometric, and computational contexts. Our results come in three flavors: we prove a reciprocity theorem for Rademacher–Carlitz polynomials, we show how they are the only nontrivial ingredients of integer-point transforms \[ \sigma(x,y):=\sum_{(j,k) \in \mathcal{P}\cap \mathbb Z^2} x^j y^k \] of any rational polyhedron $\mathcal{P}$, and we derive the reciprocity theorem for Dedekind–Rademacher sums as a corollary which follows naturally from our setup.
DOI : 10.4064/aa163-4-6
Mots-clés : introduce study rademacher carlitz polynomial operatorname sum lceil rceil lceil rceil lfloor rfloor where mathbb mathbb and variables these polynomials generalize unify various dedekind like sums polynomials naturally may view operatorname polynomial analogue sense carlitz dedekind rademacher sum operatorname sum b bigg bigg frac bigg bigg bigg bigg frac bigg bigg which appears various number theoretic combinatorial geometric computational contexts results come three flavors prove reciprocity theorem rademacher carlitz polynomials only nontrivial ingredients integer point transforms sigma sum mathcal cap mathbb k rational polyhedron mathcal derive reciprocity theorem dedekind rademacher sums corollary which follows naturally setup

Matthias Beck 1 ; Florian Kohl 2

1 Department of Mathematics San Francisco State University 1600 Holloway Avenue San Francisco, CA 94132, U.S.A.
2 Department of Mathematics University of Kentucky 719 Patterson Office Tower Lexington, KY 40506, U.S.A.
@article{10_4064_aa163_4_6,
     author = {Matthias Beck and Florian Kohl},
     title = {Rademacher{\textendash}Carlitz polynomials},
     journal = {Acta Arithmetica},
     pages = {379--393},
     publisher = {mathdoc},
     volume = {163},
     number = {4},
     year = {2014},
     doi = {10.4064/aa163-4-6},
     language = {de},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-6/}
}
TY  - JOUR
AU  - Matthias Beck
AU  - Florian Kohl
TI  - Rademacher–Carlitz polynomials
JO  - Acta Arithmetica
PY  - 2014
SP  - 379
EP  - 393
VL  - 163
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-6/
DO  - 10.4064/aa163-4-6
LA  - de
ID  - 10_4064_aa163_4_6
ER  - 
%0 Journal Article
%A Matthias Beck
%A Florian Kohl
%T Rademacher–Carlitz polynomials
%J Acta Arithmetica
%D 2014
%P 379-393
%V 163
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-6/
%R 10.4064/aa163-4-6
%G de
%F 10_4064_aa163_4_6
Matthias Beck; Florian Kohl. Rademacher–Carlitz polynomials. Acta Arithmetica, Tome 163 (2014) no. 4, pp. 379-393. doi : 10.4064/aa163-4-6. http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-6/

Cité par Sources :