Rademacher–Carlitz polynomials
Acta Arithmetica, Tome 163 (2014) no. 4, pp. 379-393
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce and study the Rademacher–Carlitz polynomial
\[
\operatorname{R}(u, v, s, t, a, b) := \sum_{ k = \lceil s \rceil }^{ \lceil s \rceil + b - 1 } u^{ \lfloor{ {( ka + t) \rfloor}/{ b } } } v^k
\]
where $a, b \in \mathbb Z_{ >0 }$, $s, t \in \mathbb R$, and $u$ and $v$ are variables.
These polynomials generalize and unify various Dedekind-like sums and polynomials; most naturally, one may view
$\operatorname{R}(u, v, s, t, a, b)$ as a polynomial analogue (in the sense of Carlitz) of the Dedekind–Rademacher sum
\[
\operatorname{r}_t(a,b) := \sum_{k=0}^{b-1}\bigg(\bigg(\frac{ka+t}{b}\bigg)\bigg)
\bigg(\bigg(\frac{k}{b} \bigg)\bigg) ,
\]
which appears in various number-theoretic, combinatorial, geometric, and computational contexts.
Our results come in three flavors: we prove a reciprocity theorem for Rademacher–Carlitz polynomials, we show how they are the only nontrivial ingredients of integer-point transforms
\[
\sigma(x,y):=\sum_{(j,k) \in \mathcal{P}\cap \mathbb Z^2} x^j y^k
\]
of any rational polyhedron $\mathcal{P}$, and we derive the reciprocity theorem for Dedekind–Rademacher sums as a corollary which follows naturally from our setup.
Mots-clés :
introduce study rademacher carlitz polynomial operatorname sum lceil rceil lceil rceil lfloor rfloor where mathbb mathbb and variables these polynomials generalize unify various dedekind like sums polynomials naturally may view operatorname polynomial analogue sense carlitz dedekind rademacher sum operatorname sum b bigg bigg frac bigg bigg bigg bigg frac bigg bigg which appears various number theoretic combinatorial geometric computational contexts results come three flavors prove reciprocity theorem rademacher carlitz polynomials only nontrivial ingredients integer point transforms sigma sum mathcal cap mathbb k rational polyhedron mathcal derive reciprocity theorem dedekind rademacher sums corollary which follows naturally setup
Affiliations des auteurs :
Matthias Beck 1 ; Florian Kohl 2
@article{10_4064_aa163_4_6,
author = {Matthias Beck and Florian Kohl},
title = {Rademacher{\textendash}Carlitz polynomials},
journal = {Acta Arithmetica},
pages = {379--393},
publisher = {mathdoc},
volume = {163},
number = {4},
year = {2014},
doi = {10.4064/aa163-4-6},
language = {de},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-6/}
}
Matthias Beck; Florian Kohl. Rademacher–Carlitz polynomials. Acta Arithmetica, Tome 163 (2014) no. 4, pp. 379-393. doi: 10.4064/aa163-4-6
Cité par Sources :