Product sets cannot contain long arithmetic progressions
Acta Arithmetica, Tome 163 (2014) no. 4, pp. 299-307
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $B$ be a set of complex numbers of size $n$. We prove that the length of the longest arithmetic progression contained in the product set $B.B = \{bb'\mid b, b' \in B\}$ cannot be greater than $O(\frac{n\log^2 n}{\log \log n})$ and present an example of a product set containing an arithmetic progression of length $\Omega(n \log n)$.For sets of complex numbers we obtain the upper bound $O(n^{3/2})$.
Keywords:
set complex numbers size prove length longest arithmetic progression contained product set mid cannot greater frac log log log present example product set containing arithmetic progression length omega log sets complex numbers obtain upper bound
Affiliations des auteurs :
Dmitrii Zhelezov 1
@article{10_4064_aa163_4_1,
author = {Dmitrii Zhelezov},
title = {Product sets cannot contain long arithmetic progressions},
journal = {Acta Arithmetica},
pages = {299--307},
publisher = {mathdoc},
volume = {163},
number = {4},
year = {2014},
doi = {10.4064/aa163-4-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-4-1/}
}
Dmitrii Zhelezov. Product sets cannot contain long arithmetic progressions. Acta Arithmetica, Tome 163 (2014) no. 4, pp. 299-307. doi: 10.4064/aa163-4-1
Cité par Sources :