Solving $a\pm b=2c$ in elements of finite sets
Acta Arithmetica, Tome 163 (2014) no. 2, pp. 127-140.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if $A$ and $B$ are finite sets of real numbers, then the number of triples $(a,b,c)\in A\times B\times (A\cup B)$ with $a+b=2c$ is at most $(0.15+o(1))(|A|+|B|)^2$ as $|A|+|B|\to \infty $. As a corollary, if $A$ is antisymmetric (that is, $A\cap (-A)=\emptyset $), then there are at most $(0.3+o(1))|A|^2$ triples $(a,b,c)$ with $a,b,c\in A$ and $a-b=2c$. In the general case where $A$ is not necessarily antisymmetric, we show that the number of triples $(a,b,c)$ with $a,b,c\in A$ and $a-b=2c$ is at most $(0.5+o(1))|A|^2$. These estimates are sharp.
DOI : 10.4064/aa163-2-3
Keywords: finite sets real numbers number triples times times cup infty corollary antisymmetric cap a emptyset there triples a b general where necessarily antisymmetric number triples a b these estimates sharp

Vsevolod F. Lev 1 ; Rom Pinchasi 2

1 Department of Mathematics The University of Haifa at Oranim Tivon 36006, Israel
2 Department of Mathematics Technion – Israel Institute of Technology Haifa 32000, Israel
@article{10_4064_aa163_2_3,
     author = {Vsevolod F. Lev and Rom Pinchasi},
     title = {Solving $a\pm b=2c$ in elements of finite sets},
     journal = {Acta Arithmetica},
     pages = {127--140},
     publisher = {mathdoc},
     volume = {163},
     number = {2},
     year = {2014},
     doi = {10.4064/aa163-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-3/}
}
TY  - JOUR
AU  - Vsevolod F. Lev
AU  - Rom Pinchasi
TI  - Solving $a\pm b=2c$ in elements of finite sets
JO  - Acta Arithmetica
PY  - 2014
SP  - 127
EP  - 140
VL  - 163
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-3/
DO  - 10.4064/aa163-2-3
LA  - en
ID  - 10_4064_aa163_2_3
ER  - 
%0 Journal Article
%A Vsevolod F. Lev
%A Rom Pinchasi
%T Solving $a\pm b=2c$ in elements of finite sets
%J Acta Arithmetica
%D 2014
%P 127-140
%V 163
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-3/
%R 10.4064/aa163-2-3
%G en
%F 10_4064_aa163_2_3
Vsevolod F. Lev; Rom Pinchasi. Solving $a\pm b=2c$ in elements of finite sets. Acta Arithmetica, Tome 163 (2014) no. 2, pp. 127-140. doi : 10.4064/aa163-2-3. http://geodesic.mathdoc.fr/articles/10.4064/aa163-2-3/

Cité par Sources :